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Fifth Symposium on

NUMERICAL AND PHYSICAL ASPECTS OF AERODYNAMIC FLOWS

Preface

This volume contains the papers presented at
the Fifth Symposium on Numerical and Physical
Aspects of Acrodynamic Flows, held at the Cal-
1fornia State University, Long Beach, -from 13 to
15 January 1992. The sympasium, like its immediate
predecessors, considers the calculation of flows
of relevance to atrcraft, ships and missiles with
emphasis on the solution of two-dimensional
unsteady and three-dimensional equations.

The general format of the sympostum and of
this proceedings volume 1s similar to that of the
Third and Fourth Symposium. There are 44 papers
and the Stewartson Memortal Lecture given by Pro-
fessor Peter Bradshaw. The first two sesstions deal
with transitton and turbulence modelling. These
are followed by two sessions on aircraft 1icing.
Sesstons 5 and 6 report recent advances in high-
11ft research and describe computational methods
using solutions of Navier-Stokes equations and

inviscid and viscous flow equations with experi-
mental work to guide the development of the calcu-
lation methods. Unsteady flows are addressed in
Sesstons 7 and 8. The remaining four sessions dea)
with two- and three-dimensional steady flows and
describe calculational methods based on the Navier-
Stokes equations and their reduced forms. This
volume will be on value to researchers, engineers
and designers and, in particular, will provide a
better understanding of aerodynamic flows and the
developmen” of calculational methods.

This symposium was made possible by financial
suppart from the Californta State University, the
0ffice of Naval Research, the NASA Ames Research
Center, and the Army Research Center, and with the
cooperation of authors, session chairs, partici-
pants and colleagues at the University and at the
Douglas Alrcraft Company.

Tuncer Cebect
Janvary 1992
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Stewartson Memorial Lecture
TURBULENCE: THE CHIEF OUTSTANDING DIFFICULTY OF OUR SUBJECT

Peter Bradshaw
Mechanical Engineering Dept., Stanford University
Stanford, CA 94305

Abstract

A review of interesting current topics in turbulence
research is decorated with examples of popular fallacies
about the behaviour of turbulence. Topics include the
status of the Law of the Wall, especially in compressible
flow; analogies between the effects of Reynolds number,
pressure gradient, unstesdiness and roughness change; the
status of Kolmogorov’s universal equilibrium theory and
local isotropy of the small eddies; turbulence modelling,
with reference to universality, pressure-strain modelling
and the dissipation equation; and chaos. Fallacies include
the mixing-length concept; the effect of pressure gradient
on Reynolds shear stress; the separability of time and space
derivatives; model. _f the dissipation equation; and chaos.

1. Introduction

I first met Keith Stewartson in the early 1960’s, when
he was a young member of the British Aeronautical Re-
search Council’s Fluid Motion Subcommittee and I was its
(very) young secretary. Even in those days, I dimly sensed
that Keith was not particularly fond of turbulence. It is,
therefore, a matter of double regret that I should be giv-
ing, so soon, a lecture in his memory, and should be forced
to choose the subject of turbulence as being my only area
of aerodynamic competence.

Those who knew Keith will recall that his strongest
term of scientific condemnation was “unrigorous”. I'm sure
he regarded the whol= phenomenon of turbulence as being
unrigorous and probably invented by the Devil on the sev-
enth day of Creation (when the Good Lord wasn’t look-
ing); I am inclined to agree. Keith would certainly have
approved of the rigour of Horace Lamb’s *Hydrodynam-
ics® (Cambridge University Press) - what the reviewer of
a later book once called his “awful correctness”. Lamb,
after discussing all the branches of hydrodynamics known
to him, finally had to deal with turbulence and remarked,
in Article 365, p. 651 of the 1916 edition, “It remains
to call attention to the chief outstanding difficulty of our
subject.” Seventy-odd years have come and gone; difficul-
ties in hydrodynamics have come and gone; but turbulence
still remains as the “chief outstanding difficulty of our sub-
ject”. Another dead friend, Jack Nielsen, Chief Scientist of
NASA Ames, said a few years ago that turbulence model-
ing was the “pacing item” in the use of the NAS computer
complex, and I think his comment, like Lamb's, is still
true.

In the last ten years or 50 we have become able to solve

the complete time-dependent Navier-Stokes equations for
turbulent fiow. However, the Reynoids numbers at which

we can get numerically-accurate complete solutions are
usually only about three or four times the lowest at which
turbulence can exist, and are considerably lower thm the
Reynolds numbers obtainable in laboratory

let alone those found in real life. Therefore, llthou;h
turbulence is starting to become accessible to computers,
there is no immediate prospect of the subject going the
same way as stress analysis and succumbing almost en-
tirely to computation: unlike elasticity, turbulence is a
non-linear (strictly, quasi-linear) phenomenon and, at least
at high Reynolds numbers, is at present accessivle only to
experiment. Thus, experimental fluid dynamics will last
for many years (hopefully, for my working lifetime).

Of ccurse, turbulence would merely be a laboratory
curiosity or a computational playground if it were not for
its extreme importance in real life and in all the scien-
tific and engineering disciplines represented here today:-
in meteorology, aeronautical aerodynamics, shipbuilding,
oceanography, in all forms of pipeline design and manufac-
ture, in combustion, in any form of mixing of contaminant,
whether of heat or concentration or pollutant - in other
words in almost all forms of “interesting” fluid motion ex-
cept those on an extremely small scale. The cream poured
into a cup of coffee goes turbulent, and the flow patterns
look very cloud-like. (The poem on the letter “H” will be
quoted in the oral lecture.)

I propose to use this Memorial Lecture to try to inject
a certain amount of rigour into the study of turbulence,
specifically by using the occasion to review some popular
fallacies about turbulence and the way in which turbu-
lent fiows behave. Some of these fallacies or illogicalities
are propagated by popular but outdated textbooks, but
some are at a deeper level of incomprehension, including
the preconceptic 1s of workers in statistical mechanics who
think that turbulence must be easy. Naturally, parts of
the material that I will produce are controversial, in the
sense that some of my professional colleagues may disagree
with me. However, I hope that even the controversial sec-
tions of the paper will be of interest and may stimulate
clarifying discussion, either at this meeting or after it. It
is of course difficult to group illogicalities into any logical
order, 8o I have imbedded them into a study of the more
popular topics of turbulence “theory”. I hope the result is
neither a rag-bag nor a grab-bag. The oral lecture will be
less specialised than this written version.

My favorite definition of turbulence is that it is the
general solution of the Navier-Stokes equations. This is
the perfect answer by a government servant to an inquiry
by a Congressman or Member of Parliament: it is brief, it
is entirely true, and it adds nothing to what was known




already. Nearly everybodyv believes, of course, that the
Navier-Stokes equations are an adequately exact descrip-
tion of turbulence, or indeed of any other nonrelativis-
tic motion of a Newtonian fluid. Even the smallest ed-
dies in turbulence in ordinary liquids and gases at earth-
bound temperatures and pressures are large compared to
the mean free path between molecular -ollisions, so the
constitutive equation of the fluid is not in doubt. How-
ever, Sec. 4 of the present paper deals with the influence
of fluctuating dilatation divu on turbulence in compress-
ible gas flow, and in this case the uncertain value of the
bulk viscosity # (Goldstein') may matter.

Fortunately for professional educators, it is generally
accepted that the basic phenomena of turbulence are the
same at any Mach number - except for some -pecial effects
to be discussed in Sec. 4 — 50 unless stated otherwise I will
assume the density to be constant.

2. The Law of the Wall

One of the main b: g blocks, or even foundation
stones, of the engineering ..udy of turbulence is the “Law
of the Wall”. It derives frum the hypothesis / assumption
that, sufficiently ciose to a solid wall (meaning, for exam-
ple, a distance from the wall an order of magnitude less
than the diameter of a pipe or the thickness of a boundary
layer) the flow depends only on the distance from the wall,
on the shear stress at the wall r,,, and on fluid properties.
The characteristics of the outer part of the flow do not
matter except that they determine 7. (In the discuasion
below. the term “shear stress” will sometime: .« used to
mean “sinear streas / density”, for short.)

Le: = consider a boundary layer for simplicity. The
characteristics of the outer part of the flow to be consid-
ered inciude the free-stream velocity U, and the boundary
layer thickness 6. The irrelevance of U,, as such, is a conse-
quence of Galilean (transiational) invariance and does not
need much discussion. The irrelevance of 6 is more crucial,
as it depends on the assumption that the fiow close to the
surface consists of eddies whose length scales (in all direc-
tions) are proportional to y, with negligible contributions
from eddies whose length scales (in anv direction) depend
on 6: if this is so, the boundary layer 1.:..kness shouid not
appear in any scaling of the inner-layer eddies. We shall
see in Sec. 5 that this hopeful view is not quite correct,
but it is certainly acceptable to first oraer.

The consequence of these arguments is, of course, that
the mean veiocity and turbulence near the surface should
scale on the “friction velocity” u, = (r,/p)}/3, on the
distance irom the surface, y, and on the kinematic viscosity
v. One of the several dimensionally-correct ways of writing
this relationship is

Ulu, = fylu,y/v). {

Another is obtained by differentiating Eq. (1) and hid:- -
a factor of u,y/v inside the function f;, as

au/dy = (u, [y} fa(uv.y/v). (2

Here u,y/v is an eddy Reynolds number based on the eddy
velocity and length scales, i.e. the friction velocity and the
distance from the surface. At large values of this Reynolds
number we expect the effects of viscosity on the turbulence
to be negligible and therefore Eq. (2) reduces to

aUjoy =vu,/(xy) (3)

where x = 0.41 is a constant - Von Karman'’s constant, of
course. The integral of this relationship is the logarithmic
law, the additive constant C =5 5 beir , a constant of inte-
gration depending on the velocity difference between the
wall and the point at which Eq. (3) becomes valid.

The advantages of the above analysis over the iradi-
tional “overlap” demonstration are (i) that the only as-
sumption made about the outer layer is that it doesn’t
matter, and (ii) that a simple physical argument can be
used to simplify Eq. (2} to the so-called mixing-length
formula, Eq. (3).

The constant of integration C is equal to 5 only on
smooth walls: on rough walls, it becomes a function of
the roughness Reynolds number u,k/v and of the rough-
ness geometry; the uncertainty of the effective origin of
y on rough walls is a further complication. The constant
x, on the other hand, is supposedly universal: it is the
same in flows of water and of air on all geometries involv-
ing smooth surfaces, and indeed on ail geometries involv-
ing only small roughness; it is the same in the atmospheric
boundary layer, in the depths of the ocean and on the sands
of Mars. Alas x and C are not constant within the tur-
bulence modelling community ~ a remarkably wide range
of values is in use, Those quoted are from the painstaking
data analysis of Coles?.

Now there are still textbooks ~ and even living people
- that regard the log law as a deduction from the mixing-
length formula, Eq. (3), (which it is) and aiso regard
the mixing-iength formula for the inner layer as correct
(which it is) and also regard Prandtl’s original derivation
of the mixing-length formula by analogy with molecular
motion as correct (which it certainly is not). As the Roman
Catholic Church quite properly pointed cnt to Galileo, the
success of deductions from a hypothesis does not prove
its truth. Philosophers call this the fallacy post hoc, ergo
propter hoc (“after that, therefore because of that”) and
it is the basis of witch-doctoring (last time we siaughtered
a white cow, it rained; there is a drought; therefore...).

Quite apart from philosophical questions of falsifiabil-
ity, it is clear that if a result can be derived by dimen-
sional analysis alone, like Eq. (3), then it can be derived
by almost any theory, right or wrong, which is dimen-
sionally correct and uses the right variables. There is a
strong susvicion that Prandtl got the idea of the lumps of
fluid (“Fiussigkeitsballen”) of mixing-length theory from
visual studies of turbulent open-channel flows with parti-
cles sprinkied on the surface to show up the motion. Unfor-
tunatelv. the boundarv condition at a free surface permits




only motion tangential to the surface and not normal to it,
30 the surface becomes a piane of symmetry with the vor-
ticity vector everywhere normal to it. The only motions
that can remain are what saijors, but not landlubberly tur-
bulence researchers, call “eddies”. Try it, and you will see
what Prandtl saw.

3. Extensions to the law of the wall

The law of the wall derived in Sec. 2 is valid, or is
supposed to be valid, for a shear stress equal to the wall
shear stress and a density equal to the wall density. There
is some support for an extended version of Eq. (3), still for
u,y/v > 30 approx., in conditions where either the shear
stress r = —puv or the density p varies with distance from
the surface. If u, is replaced by (r/p)}/2, we get

aU/dy = (1/p)*/?/(xy) (4)

The hand-waving argument for Eq. (4) is that, in the orig-
in.i analysis leading to Eq. (3), u, is really being used as
the scale at height y, and not as a true surface parameter:
if r varies with y then the local value, rather than the wall
value, is the correct one to use in formulating an eddy ve-
locity scale. This wouid be a rigorous argument only if the
typical eddy size were smail compared with y, so that the
local shear stress would be closely equal to the right basis
for a velocity scale, namely some kind of weighted-average
shear stress over a y distance equal to a typical eddy size.
Unfortunately, of course, the eddy size is of the same order
as y.

All we can claim is that local shear streas gives the
best easily-available velocity scale. Therefore, the exten-
sion of Eq. (3) to Eq. (4) requires an extension of faith in
the inner-layer hypothesis which by no means all research
workers possess. Nevertheless the application of Eq. (4) to
flows with suction or injection, where the shear stress varies
with distance from the surface according to r = r, +pUV,,
is quite well supported by experiment. An operational dif-
ficulty is that in typical flows with suction or injection the
surface is porous, on a length scale A, say, which is usually
not small compared with the viscous scaie v/u,, so that
the “roughness” or “porosity” Reynolds number u,A/v is
important, implying that the additive constant in any in-
tegral of Eq. (4) will depend on the surface conditions as
well as on the transpiration parameter V,, /u,.

4. Compressible flow

In the inner iayer of a boundary layer in con:pressible
fiow, the shear stress is approximately equal to the surface
value, but the density varies quite rapidly with distance
from the surface (increasing as the temperature decreases
with distance from the hot wall). The “Van Driest trans-
formation” transforms inner-layer velocity profiles to fit
the incompressible log. law. The transformation is, in
effect, an integral of Eq. (4) with p as a function of y.
Here T and hence p come from the assumption of a con-
stant turbulent Prandt! number: details will not be given
here, but can be found in Ref. 3 and elsewhere. The Van
Driest skin-friction formuls is derived from the Van Driest
transformation. Predictions of skin friction in compressible

boundary layers (on flat plates in zero pressure gradient,
say) are currently a subject of controversy, but there are
certainly no experimental data that reliably invaiidate the
Van Driest skin-friction formula or the Van Driest trans-
formation. This is probably the best justification for the
extension of the law-of-the-wall analysis discussed in Sec.
3, bui doubtless does little for the confidence of the deter-
minedly subsonic.

In low-speed flow, the mean (streamwise) pressure
gradient, as such, has almost no effect on turbulence (see
Sec. 6). In compressible flow, streamwise pressure gradi-
ents change the density of luid elements and can produce
large changes in turbulence quantities, especially, of course,
in flows through shock waves (e.g. Selig et al.*). Moreover,
even pressure fluctuations which are 2ot small compared
with the mean pressure can affect turbuleace Specifically,
if the Mach pumber based upon a typical fluctuating ve-

locity and the local speed of sound is no longer small com-
pared to unity, there may be significant dissipation of tur-
bulent energy via dilatation fluctuations divu, and signif-
icant correlations between fluctuations of pressure and of
dilatation:¢. Measurements correlated by Birch & Eggers”
show that the rate of spread of a turbulent mixiag layer
(in sero mean pressure gradient) starts to depend siznifi-
cantly on Mach number at Mach numbers close to unity.
The more more recent data of Papamoschou & Roshko®
show even larger Mach-number dependence. This appar-
ently contradicts the well-known finding that the behav-
ior of compressible boundary layers can be quite weil pre-
dicted by turbulence models that ignore compressibility
effects (except of course that the right mean density must
be used), at least for Mach numbers up to about 5. How-
ever, the typical turbulence intensity of a mixing layer is
about five times that in a boundary layer, which implies
that a mixing layer at M=1, where M is based on the
mean velocity difference across the layer, has the same ra-
tio of velocity fluctuation to speed of sound (a.k.a. fluctu-
ating Mach number) as a boundary iayer at roughly M=5.
There is great current interest, stemming from the NASP
and SCRAMJET projects, in prediction of mixing layers
as the only shock-free turbulent flow for which the data
show obvious effects of compressibility.

5. *Inactive” motion

The log-law analysis relies on the first-order hypothe-
sis that u,, y and v are the oniy relevant variables, which
cannot be exactly and perfectly true. If the arguments
that lead to Eq. (3) are applied to the turbulent motion
they lead to results for the log-law region like w3/u? =
constant, whereas any boundary-layer experiment shows a
decrease with increasing y, starting as close to the wall as
%,y/v = 17 at typical small laboratory Reynolds aumbers.
This has led some people to regard the whole law-of-the-
wall concept of local scaling as fallacious and i‘s apparent
success for the mean motion as fortuitous. Fortunately,
this apparent discrepancy in the log-law analysis can be
used to rescue the basic assumptions, by taking note of
the so-called “inactive” motion *!°. The concept is sim-
ple: the motion near the surface, even though it results
mainly from eddies actually generated near the surface,




is necessarily affected by eddies in the outer part of the
flow (i.e. those whose length scale is of the order of §).
Because the pressure fluctuation at a given point in a tur-
bulent flow is derived from an integral of the governing
Poisson equation over the whole of the flow, it follows that
the eddies in the outer part of the boundary layer or pipe
flow can produce pressure fluctuations which extend to-
wards the surface and cause nominally-irrotational motion
in the surface layer. An equivalent, alternative, explana-
tion is the “splat” mechanism (the origin of the term will
be explained in the oral lecture) in which the large eddies
in the outer flow are supposed to move towards the surface,
to be reduced to rest by the normal-component “imperme-
ability” condition at the wall, and to release their normal-
component energy into the two tangential components u
and w.

The “splat effect” motions, and the pressure fluctu-
ations generated in the outer layer, have very long wave-
lengths in the z and z directions compared to the motions
generated close to the surface. It follows from the con-
tinuity equation that the v-component velocity produced
near the surface by outer-layer pressure fluctuations or
large-eddy intrusions is of the order of y/A times the u- or
w-component velocity, where A is the z- or z-component
wavelength. Therefore the contribution of the “inactive”
motion to the shear stress —puv is small, of the order of
y/A - hence the name “inactive”. Note that the “inac-
tive” fluctuations are not entirely irrotational: the bound-
ary condition u = 0,v = 0 at the surface results in the
generation of a Stokes layer (see Sec. 6 on “slip veloc-
ity"). Even though “inactive” u-component fluctuations
contribute significantly to u?, producing the anomalous y-
dependence of u? mentioned above, the effect on the mean
law of the wall is very small. (A logarithm is a slowly
changing function, so that fluctuations in u, have very lit-
tle effect on the term in{u,y/v) in the log. law, and, there-
fore, the time-average velocity closely follows the log. law
written with time-average u,.) The same arguments can
be used to support the use of the log. law in unsteady-flow
calculations at not-too-high ampiitudes. The unsteady log.
law must also be limited to not-too-high frequencies of un-
steadiness: one would expect it to break down, at given y,
at a frequency which was not small compared to the typical
turbuience frequency u, /y. Very few unsteady-fiow exper-
irnents reach frequencies high enough to disturb the log.
law - which is a criticism of unsteady-flow experiments in
general.

The contribution of the “inactive” fluctuations to the
power spectra of u and w at low wave numbers (low fre-
quencies: wave number = 2x/{wavelength]) is consider-
able, resulting in very large differences between the mea-
sured spectra in typical turbulent flows and those predicted
by inner-layer analysis. The latter predicts that the wave-
number spectral density should scale on u, and y, and that
the wave number k should appear as ky (since we have ne-
glected v, this applies only for u,y/v > 30 and at wave
numbers small compared with the viscous limit, but nei-
ther restriction concerns us here). In practice, there is an
apparent Reynolds-number effect at given «,y/v: strictly
it is » y/6 effect, but y/6 = (u,y/v)/(u,é/v.

In the atmospheric boundary :ayer, which is of the or-
der of 1 km thick, the inactive-motion effects on spectra
measured at the standard height c¢ 19 m are very large, and
in particular the u-component spectrum follows a —5/3
power {aw down to very low wave numbers. This phe-
nomenon, which is present, but less spectacular, in lab-
oratory boundary layers, has been the cause of a large
amount of confusion, controversy and difficuity, because
the classical Kolmogorov scaling indicates that the spec-
trum should vary as k~%/3 oniy for wave numbers large
compared to those of the energy-containing eddies. In the
context of the atmospheric boundary layer at a height of 10
m this means wavelengths much smaller than 10 m. The
fact that the experimentally-observed spectrum follows the
—~5/3 law down to wave numbers far lower than could be
expected from the arguments of inner-iayer scaling and the
Kolmogorov universal-equilibrium hypothesis is one of the
most difficult “fallacies” in turbulent fiow: it is of course
a case of post hoc ergo propter hoc.

In summary, the qualitative idea of “inactive motion”
explains both the apparent failure of inner-layer scaling
and the unexpected success of the —5/3 law.

8. “Slip velocity”

Several difficulties or misconceptions about turbulent
flows over walls can be cleared up if we recall that the
very thin viscous wall region u,y/v < 30 really produces
what might be called a “slip velocity” between the fully-
turbulent flow and the surface. As well as the obvious
example of Reynoids-number (and Peclet-number) effects,
they include the effects of pressure gradient, unsteadiness
and change of surface roughness.

6.1 Effects of Reynolds number and Peclet number
(viscosity and conductivity)

If the Reynolds number of a turbulent flow — based
on total thickness and, say, the square root of the maxi-
mum shear stress or turbulent energy - is large, classical
(e.g. Kolmogorov) theory suggests that the details of the
turbulent motion should be independent of Reynolds num-
ber, except for the very smaliest eddies which are responsi-
ble for viscous dissipation of turbulent kinetic energy into
thermal internal energy. In this respect at least, classi-
cal theory seems to be correct, and there is no significant
evidence to refute it. If the Reynolds number of a given
turbulent eddy, made with its typical velocity fluctuation
and its typical length scale, is large, there is no reason why
viscous effects on the eddy should be significant. (This
statement should strictly be phrased in statistical terms!)
In a pipe fiow, half thc mean-square u-component inten-
sity near the centre-line comes from wavelengths larger
than the pipe diameter, 30 the “eddy Reynolds number”
of the main energy-containing eddies is of the same or-
der as the mean Reynolds number defined at the start of
the paragraph, and we can use the former for simplicity.
The “energy cascade” process of Kolmogorov theory, at-
tributable to random vortex stretching, implies that tur-
bulent energy is transferred from energetic eddies of low
wave number (i.e. large Reynolds number) to weak ed-
dies of high wave number (small Reynoids number), and




although back-scatter transfer from small eddies to large
can occur intermittently, the time-average transfer of en-
ergy is from the large eddies to the small and there seems
to be no significant “back scatter” of viscous effects.

Near a solid surface (y* > 30) the largest eddies,
whose wavelength is roughly equal to y, are no longer very
large compared to the smallest eddies (the smallest-eddy
scale, Kolmngorov’s n or Iy, is about 0.06y at y* = 30), so
the energy-containing eddies ~ which aiso carry the shear
stress — start to depend on viscosity. (Also, and slightly
differently, the mean velocity gradient becomes so large
that viscous shear stress is a significant fraction of the to-
tal shear stress.) Therefore, viewed from the outer part of
the flow, there is a viscosity-dependent region near the wall
and so the velocity difference between the surface and, say,
y/6 = 0.1, depends on Reynolds number. Viewed from
the outer part of the flow, there is a Reynolds-number-
dependent “slip velocity” at (strictly near) the surface.

In a free shear layer (wake, jet, mixing layer...) there
is no true viscous effect unless the Reynolds number is
so low that turbulence can only just exist. However, free
shear layers can be quite strongly dependent on the ini-
tial conditions. for long distances downstream, and since
the initial conditions frequently do depend on Reynolds
number there is a “pseudo-viscous” effect.

A corollary of the negligibility of viscosity as part of
turbulent transport of momentum is the negligibility of
conductivity in the transport of heat or mass by turbu-
lence. Briefly {(again) the “turbulent Prandti number” is
independent of the molecular Prandtl number unless the
Reynolds number based on eddy velocity scale and eddy
length scale, i.e. u,y/v is small.

6.2 Effect of pressure gradient

Another of the standard incomprehensions about tur-
bulent flow is the effect of (streamwise) mean pressure gra-
dient on the turbulence as such: recall that we are con-
sidering only incompressible flow. It arises partly because
experimenters tend to normalize their turbulence measure-
ments by the local mean velocity. In adverse pressure gra-
dient, say, the mean velocity decreases with increasing z
s0 the normalized turbulence intensities, shear stress etc.
increase. However it can easily be shown that absolute tur-
bulence properties on a given streamline are only slightly
aflected by pressure gradient.

The Reynolds-stress transport equations do not con-
tain the mean pressure (they contain correlations between
the pressure fluctuation and instantaneous rate of strain,
but pressure fluctuations have no connection whatsoever
with the mean pressure). Also, the z-component mean
vorticity 8V /dz - aU /8y is unaffected by pressure gradi-
ent, and if we assume that the boundary layer approxi-
mation is valid this means that U/dy is unaffected, even
though the pressure change leads to a change in veloc-
ity all through the shear layer and thus may change §
significantly. Alternatively, recall that a static-pressure
gradient does not affect the total pressure P (on s given
streamline} directly. In the simple case of two-dimensional

fiow, therefore, 3P/, where % is the stream function,
is unaffected, and if dp/dy is negligible, as required by
the boundary-layer approximation, a little algebra shows
that 83U /8y is unaffected. At the surface, where the total
pressure is equal to the static pressure, there is a change
in P and 8U /3y, produced of course by viscous stresses.
The “internal layer”, in which the total pressure and mean
vorticity rise to their unaffected profiles, gradually spreads
out from the surface, but outside this the static-pressure
gradient has no effect except to reduce the mean velocity
and thus thicken the boundary layer. This result applies to
laminar or turbulent boundary layers (or other wall flows
such as those in tapered ducts). In summary, the initial
effect of pressure gradient is confined to the “slip velocity”
at the wall.

Mean pressure gradients do have some effects on the
turbulent motion. Adverse pressure gradient stretches ed-
dies in the y direction, because the shear layer thickens:
however, the area, in side view, of a given eddy or fluid
element is unaltered. and so if we suppose that the length
scale of an eddy is just the square root of its area in side
view, or the cube root of its volume, the length scale is
unaltered. (This is admittediy a crude argument.) Of the
terms in the Reynolds-stress transport equations, the only
ones directly affected are the y-component diffusion terms,
which are the derivatives of various triple prodects, etc.,
with respect to y. If the triple product on & given stream-
line is unaffected but the streamlines diverge in the z — y
plane because of the adverse pressure gradient, the y-wise
derivative is reduced.

-

6.3 Unsteadiness

The effect of unsteadiness can be understood in the
same way as that of pressure gradient — of course, unsteadi-
ness is usually forced by a streamwise pressure gradient.
In the case of unsteady laminar flow the internal layer is
called a Stokes layer. There are close correspondences in
laminar flow between an infinite osciilating plate in still
air and flow over an infinite stationary surface driven by
an oscillating pressure gradient, and the qualitative corre-
spondence carries over to turbulent flow. If the pressure
gradient is strong enough to cause separation (however de-
fined), the internal layer is carried into the outer part of
the flow and the “slip velocity” concept breaks down, as it
would in steady separation.

6.4 Change of roughness

Another occasion where a change of boundary con-
dition affects the flow only in an “internal layer” is the
fiow downstream of a change in surface roughness. This
is comparatively rare in aerodynamics but an important
case in meteorology where, for example, air can flow from
the “smooth” ocean to the land and undergo a change
of apparent surface roughness. Indeed, the internal-layer
concept was first proposed to describe this case. As the
surface boundary condition changes, the additive constant
C in the logarithmic law for & smooth surface is replaced
by the appropriate value for a rough surface. The effect of
this change in surface boundary condition spreads outward
from the surface at an angie of the order of rms &/U, i.e.




of the order of 3 %, so that the rate of contamination of
outer-layer turbulence by inner-layer changes is no greater
than about 1 or 2 degrees. Since the pressure gradient is
nominally zero there is no streamiine divergence above the
internal layer, although the change in velocity in the inter-
nal layer produces a vertical displacement of the outer flow
(upwards, in the case of a smooth-to-rough change where
the flow in the internal layer is retarded).

7. Spectra and convection velocity

Classical turbulence theory aims to predict all the sta-
tistical properties, not simply the Reynolds stresses. In
particular it deals with the statistical distribution of eddy
sizes. Jt is usually formulated in terms of wave-number
spectra, wave number being a vector with the direction of
wavelength and the magnitude of 2x/ wavelength. (The
alternative is two-point spatial correlations, which are less
convenient mathematically.) Wave-number spectra are the
Fourier transforms of the two-point correlations, but a full
description requires correlations for all magnitudes and di-
rections of the distance between the two points, or spectra
for all magnitudes and directions of the wave number). In
most experiments only frequency spectra, and a few cor-
relations along the coordinate axes, are measured.

This is the best place to comment on the definition
of “frequency” in turbulence. The frequency seen by an
observer moving with the mean flow is (velocity scale of
turbulence) / (length scale of turbulence) - for example
t, [y in the inner layer - but the frequency seen by a fixed
observer is approximately (MEAN velocity} / (length scale
of turbulence) and is usually much larger. The recipro-
cal of the moving-observer frequency is sometimes called
the “eddy turnover time”: this is of course an order-of-
magnitude concept. A related difficulty is the status of
time derivatives: all transport equations in fluid flow, in-
cluding the Navier-Stokes equations, have the operator
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o + wa—z‘ (5)
on the left-hand side. It is called the substantial deriva-
tive, or the transport operator, and it is the rate of change
with time seen by a fluid element. The relative size of the
temporal and spatial derivatives depends on the velocity
of the observer but the sum of the derivatives does not.

The fixed-observer frequency is used to deduce z-com-
ponent wave-number spectra from frequency spectra, using
Taylor’s hypothesis that the speed at which the turbulence
pattern moves downstream (its “convection velocity”) is
closely equal to the mean velocity. It is qualitatively ob-
vious that this will only work well if the mean velocity is
large compared to the velocity scale of turbulence, so that
an eddy is carried past the measurement point in a time
very much less than its turnover time. A more precise
analysis is possible.

There are various definitions of the actual “convec-
tion velocity” of turbulence: most are in effect phase ve-
locities and therefore not ideal for considering convection
of turbulent kinetic energy or Reynolds stress. A plausi-

ble definition of a group (energy-transport) velocity comes
from considering the streamwise (say, z-wise) “diffusion”
of turbulent energy (transport of the turbulent energy by
the turbulence) the energy flux rate, whose z derivative
appears in the turbulent energy equation, is ¢/ Pup+ (v +
w3 + uw3)/2. Rates of energy flux due to pressure fluc-
tuations seem to be small ~ except perhaps near the free-
stream edge of a turbulent flow where pressure fluctuations
drive an “irrotational” motion which extends outside the
vortical region — and are certainly not measurable, which
is some justification for neglecting them. Doing this, and
wntmg q’ for u2 + v2 + w3, (so that the turbulent kinetic

_q_gz) the above energy flux rate can be written
as (u3 + uv? + uw?)/q2. We can define the transport ve-
locity of turbulent energy as this fiux rate divided by the
turbulent energy. The largest contribution to the numera-
tor is u3/2 - though the others are not negligible - so the
transport velocity is of order \/(¢?) X Sy, where S, is the
skewness of u. Now S, lies in the range +1 approx. over
most of a boundary layer, so we can finally say that the
z-component transport velocity of turbulent energy is not
more than a few times /(¢g?). Since this is the difference
between the group velocity of the turbuience and the mean
velocity, we see that the difference is a small percentage of
the mean velocity in flows with low turbulence intensity,
such as boundary layers. This quantitatively justifies the
use of Taylor’s hypothesis in such flows and of course allows
an estimate of its inaccuracy in highly-turbulent flows.

Differences between convection velocity and mean ve-
locity are large near the free-stream edges of mixing layers
and jets. In these regions the irrotational motion, induced
by pressure fluctuations generated in the high-intensity re-
gion of the flow near the infiexion point(s) in the velocity
profile, is strong compared to the true (vorticity-carrying)
turbulence, and its convection velocity is necessarily ciose
to the mean velocity in the high-intensity region. The ro-
tational motion (vorticity pattern) seems to travel at a
speed close to the local mean velocity, as predicted by the
above analysis (intensities near the outer edge of a jet are
not large). In terms of the above analysis, the streamwise
transport velocity of the vorticity pattern is still domi-
nated by the triple-product terms, while ’u/p determines
the transport velocity of irrotational motion.

The de Havilland Comet [ jet airliner had four engines,
buried in the wing roots. The designers carefully arranged
that the jets themselves would clear the fuselage, but forgot
the “near field” pressure fluctuations - far more intense
than the jet noise - that drive the irrotational motion.
The pressure patterns, travelling at the above-mentioned
convection velocity, produced fluctuating stresses at the
fixed-observer frequency in the aircraft skin, which led to
fatigue of the aluminium.

Later marks of Comet had the engines toed out.
Misconceptions about turbulence can be expensive!

8. The microscale and the Kolmogorov theory

Frequently, the Taylor “microscale” is used as a length
scale in discussions of wave-number (or frequency) spectra.




The microscale A is a hybrid scale of turbulence. It is
usually defined by

A2 = 43/(0u/0z)3 ~ (6)

(other definitions with different choices of velocity compo-
nent or gradient direction occasionally appear). This is
an equation whose numerator is a property of the energy-
containing turbulence, but whose denominator is a prop-
erty of the dissipating eddies (if the dissipating eddies are
statistically isotropic the dissipation rate is 15v(du/dz)3).
For this reason it is a misconception to regard the mi-
croscale as the length scale of any particular group of ed-
dies: it actually lies closer to the length scale of the dis-
sipating eddies than that of the energy-containing eddies.
The Reynolds number based on the microscale and the
root-mean-square turbulence intensity,Yu?)/2/v, however,
has a more understandable meaning. If the Reynolds num-
ber is high enough for the dissipation to be equated to
the isotropic formula, the microscale Reynolds number is
proportional to the square root of an “eddy” Reynolds
number for the energy-containing motion, based on the
rms turbulence intensity and the dissipation length scale
L= (F)’/2 /€. Of course, this does not give the microscale
the status of Eddy Length Scale post hoc.

It is important to notice that the “dissipation” in the
definition of L is in fact the rate of transfer of turbulent
kinetic energy from the large eddies to the smallest eddies
which is, by all prevailing turbulence theories, supposed to
be a property of the large eddies rather than the smallest
eddies. The smallest eddies simply rearrange themselves
to dissipate the energy handed down to them. If the turbu-
lence is changing slowly with time (or streamwise distance)
then, of course, the rate of transfer from the large eddies
to the smallest eddies is equal to the rate at which en-
ergy is being dissipated by the smallest eddies, but this
is not formally an equality because the “cascade” process
is not instantaneous. In rapidly-changing turbulent fiows
the “equilibrium” arguments fail, and the rate of transfer
from the energy-containing eddies to the dissipating eddies
is not equal to the rate at which energy is being transferred
from the dissipating eddies to heat.

This restriction on Kolmogorov’s “universal equilib-
rium” theory, which we used in Sec. 6.1, is too often for-
gotten.

Another restriction of the Kolmogorov theory is that,
of course, energy which is transported in the y direction
by turbulent “diffusion” will be generated at small y, but
dissipated at large y where the statistical properties are
different. In particular, in flows with a free-stream bound-
ary, energy is generated in regions of large mean shear and
then transported in the positive y direction to regions of
zero or negligible mean shear before being dissipated. The
energy transfer through the inertial subrange at the second
location is likely to be intermediate between the dissipation
rates at the two locations.

Nevertheless results from a large number of experi-
ments on turbulent shear layers have recently been anal-
ysed*! to show that Kolmogorov scaling works remark-

ably well when adjusted for the intermittency factor ~ (the
fraction of time for which the fiow at a given location is
turbulent). In an intermittent region, the average of any
turbulence quantity within the turbulent part of the flow
is 1/4 times the conventional average over all time. For
example the conventional-average spectral density and the
dissipation ¢ must both be muitiplied by 1/4. However
the Kolmogorov “—~5/3" law for the spectral density in
the so-called inertial subrange contains ¢2/* so that, for-
mally, there is a spare factor of 4!/3 and we certainly do
not expect the Kolmogorov law to hold if written with
conventional-average quantities. The data analysis of Ref.
11 shows that the Kolmogorov formula still works for a
wide range of intermittent fiows when written for the tur-
bulent part of the flow, i.e. taking account of the “spare
factor”, and using the dissipation rate at the local value
of y. Since the formula strictly applies only to nearly-
homogeneous turbulence, and an intermittent region, al-
most by definition, contains only one large eddy at a time,
this result is a surprising testimonial to the robustness of
the Kolmogorov theory. Needless to say, the usual cautions
about post hoc apply.

9. Turbulence modelling
9.1 Normal pressure gradients

An incomprehension entirely unrelated to turbulence,
which nevertheless causes confusion in tests of turbulence
models, is the effect of normal pressure gradient on bound-
ary layers and other shear layers. If the shear layer obeys
the boundary layer approximation then, by definition, the
pressure gradient in the y direction is negligibly small.
However, if in a real flow the normal pressure gradient
is not negligible, there will be a velocity gradient 3U/dy
even in the external stream (where the total pressure is
constant) and this velocity gradient will, in principle, lead
to extra production of turbulence via the product of mean
velocity gradient and turbulent shear stress. Of course, the
same effects would be found within the shear layer y < &,
but would be less easily identified. Therefore, even if a
turbulence model produces exactly correct predictions of
the shear stress — given the mean velocity profile as input
~ it will not give acceptable results in the case where nor-
mal pressure gradients affect the mean velocity gradient.
(Recall that the boundary-layer momentum equation can
be written as dP/dz = dr/dy.) This is probably a much
more important reason for inaccuracy of predictions based
on the boundary isyer approximation in rapidly-growing
flows near separation than the often-quoted presence of
significant normal-stress gradients.

9.2 Universality

Perhaps the biggest fallacy about turbulence is that
it can be reliably described (statistically) by a system of
equations which is far easier to solve than the full time-
dependent three-dimensional Navier-Stokes equations. Of
course the question is what is meant by “reliably”, and
even if one makes generous estimates of required engineer-
ing accuracy and requires predictions only of the Reynoids
stresses, the likelihood is that a simplified model of tur-




bulence will be significantly less accurate, or significantly
less widely applicable, than the Navier-Stokes equations
themseives - i.e. it will not be “universal”.

Irrespective of the use to which a model will be put,
lack of universality may interfere with the calibration of
a model. For example, it is customary to fix one of the
coefficients in the model dissipation-transport equation so
that the model reproduces the decay of grid turbulence
accurately. This involves the assumption that the model is
valid in grid turbulence as well as in the flows for which it
is intended — presumably shear layers, which have a very
different structure from grid turbulence. '

It is becoming more and more probable that really
reliable turbulence models are likely to be 80 long in devel-
opment that large-eddy simulations (from which, of course,
all required statistics can be derived) will arrive at their
maturity first. (The late Stan Corrsin once described the
process of turbulence modelling as a “trek to determi-
nacy”.) Certainly, over the last twenty years the rate of
progress in turbulence modelling has been pretty small
compared to the rate of progress in development of dig-
ital computers, and the consequent increase in Reynoids-
number range and geometrical compiexity attainable by
simulations. Until recently, most work has concentrated
on “complete” simulations, covering the whole range of
eddy sizes, while large-eddy simulations, which alone of-
fer the prospect of predictions at high Reynolds numbers,
have been somewhat neglected.

9.3 Eddy viscosity and gradient transport

Turbulence models which invoke an eddy viscosity (of
whatever type) necessarily produce pseudo-laminar solu-
tions with the stresses closely linked to the mean-flow gra-
dients: they may be well-behaved but they are not usually
very accurate away from the flows for which they have
been calibrated. Turbulence models based on term-by-
term modelling of the Reynoids-stress transport equations
produce solutions which may be accurate in some cases,
but are liable to fail rather badly in other cases: that is,
they are “ill-behaved” in a way that eddy-viscosity meth-
ods are not.

It may be this “reliable inaccuracy”, rather than the
larger computer resources needed for Reynolds-stress trans-
port models, which has led to two-equation (e.g. k,¢)
or even one-equation methods being the industry stan-
dard. With all goodwill to my friends Barrett Baldwin
and Harv. Lomax, the one-equation Baldwin-Lomax tur-
bulence model has been extended - by others - far beyond
its intended domain, simply because it has the virtue of
almost never breaking down computationally!

It has, of course, often been said that it is just as un-
reliable and unrealistic to define an eddy viscosity entirely
in terms of turbulence properties (as in the k, ¢ method) as
to define it entirely in terms of mean-flow properties as in
the Baldwin-Lomax method. Eddy viscosity is the ratio of
a turbulence quantity (i.e. a Reynolds-stress) to a mean-
flow quantity (i.e. a rate of strain or velocity gradient), so,
like the microscale, it is a hybrid quantity.

Minor fallacies in turbulence modelling abound, but
misuse of gradient-transport hypotheses is probably re-
sponsible for more than its fair share. One of the most
spectacular was the use many years ago, by authors I will
pot identify, of the gradient-transport approximation for
diffusion of turpulent energy by pressure fluctuations. In
terms of classical physics, anything less likely than pres-
sure diffusion to obey a gradient-transport approximation
could scarcely be imagined. A fallacy which has, in charity,
to be regarded as a deliberate approximation, is the use -
even in Reynolds-siress transport models — of the eddy-
diffusivity (gradient-transport) approximation for the tur-
bulent transport terms. It appears that most of the tur-
bulent transport of Reynolds stress is provided by tripie
products of velocity fluctuations, rather than by the pres-
sure diffusion just mentioned, and therefore a gradient-
transport approximation is not so obviously unphysical.

9.4 The dissipation-transport equation

Most turbulence models, whether relying on an eddy
viscosity or on the Reynolds-stress transport equations,
use the dissipation-transport equation to provide a length
scale or time scale of the turbulent flow. Strictly, the
length scale or time scale required is that of the energy-
containing Reynolds-stress-bearing eddies, not that associ-
ated with the dissipating eddies as such, and so two ques-
tions arise. One is whether the rate of dissipation is ade-
quately equal to the rate of energy transfer from the large
eddies (which clearly, is the quantity that we really want
to model); the other is whether, if we really pretend to
be using the dissipation transport equation - all of whose
terms depend on the statistics of the smaliest eddies -
we can logically model those terms by using the scales
of the larger, energy-containing eddies. I think it is in-
escapable that current models of the so-called dissipation
transport equation, which certainly do parameterize the
terms as functions of the large-eddy scales, start out with
the dissipation-transport equation as such and end up with
a totally-empirical transport equation for the energy trans-
fer rate. In other words, the relation between the “dissipa-
tion” transport models and the exact transport equation
for turbulent energy dissipation is so tenuous as not to
need consideration. Unfortunately, even Reynolds-stress
transport models usually employ this suspect dissipation-
transport equation to provide a length scale, and this is
undoubtedly one of the reasons why Reynolds-stress trans-
port models have not outstripped two-equation models. A
Jess-used alternative to the ¢ equation is the w equation
(sdmitted to be totally empirical). w is nominally pro-
portional to ¢/k where k is the turbulent kinetic energy,
but conversion from one to the other (in either direction)
produces the interesting result that the turbulent trans-
port terms in the transport equation for the first quantity
(the integral of transport terms over the flow volume be-
ing by definition sero) convert to a transport term plus
s “source” term in the equation for the second quantity.
There is increasing evidence that using w to provide a
length scale gives better results than using e: if there is
a reason other than more judicious choices of empirical co-
efficients, it must lie in the above-mentioned source term.




9.5 Invariance

One of the customary requirements of a turbulence
model is that it should be “invariant” (with respect to
translation or rotation of axes). The boundary layer (thin-
shear layer) equations are not invariant: it is therefore
quite unrealistic to expect a shear-layer model to be totally
invariant, and it is perfectly realistic to suppose that the
direction normai to the shear-layer (y) is a special direc-
tion. There seems to be no reason why a turbulence model
should not, given an identifiable “special direction” in a
shear-layer use that special direction for orientation of its
empirical constants and functions. Even though equations
(such as the Navier-Stokes equations or the time-average
Reynolds equations) may be invariant, the boundary con-
ditions for which they are to be satisfied certainly are not
invariant (almost by definition). Therefore, the solutions
of the exact, or approximate, equations of motion of turbu-
lent flow cannot be expected to be invariant with respect to
translation or rotation. From this it is a rather small step
to argue that the empirical constants or functions in these
model equations should, again, be released from invariance
requirements.

9.6 Local modelling of pressure-fluctuation terms

The mean products of fluctuating pressure and fluc-
tuating rates of strain that act as redistribution terms
in the Reynolds-stress transport equations represent, very
crudely speaking, the effect of eddy collisions in making
the principal Reynolds stresses more nearly equal - that
is, making the turbulence more nearly isotropic (statisti-
cally). The shear stress in isotropic turbulence is zero, 30
the effect of the pressure-strain terms on the shear stress,
and their modelling, is of great interest.

Pressure fluctuations within 2 turbulent flow are one
of the Great Unmeasurables: they are of the order of
pu? and so, unfortunately, are the pressure fluctuations
induced on a static-pressure probe by the velocity field.
That is, the signai-to-noise ratio is of the order of one. To
say that signals cannot be educed even with S/N = O(1)
is itself a fallacy, but in this case the attempts made to do
so have not met with general acceptance. Pressure fluc-
tuations can be extracted from simulations, but these are
confined to low Reynolds number.

An equation for the pressure (mean and fluctuating)
can be obtained by taking the divergence of the Navier-
Stokes equations. It is a Poisson equation, and it is nec-
essary in turbulence modelling to consider the different
terms on the right-hand side separately, by writing a Pois-
son equation for each and adding the solutions to get the
pressure. One such is the equation for the “rapid” pres-
sure, which for a two-dimensional boundary-layer flow is
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The “rapid” pressure is so called because it responds im-
mediately to a change in the mean fiow, as represented by
dU/a3y. To regard this apparently-surprising fact as phys-
ically meaningful is a misconception: it is just a resuit of

the way we take averages, and, obviously, the turbulence
at a given instant does not know what the mean fiow is.
A highly symbolic solution of the equation is

P 28U

=- dy dz (®)
where V=2 is a weighted integral over the whole fiow vol-
ume. In other words, the “rapid” pressure at a given point,
and its contribution to the pressure-strain terms at that
point, depend on conditions for a distance of several typical
eddy length scales around that point - i.e. they are “non-
local”. The same non-locality accounts for the presence
of irrotational velocity fluctuations outside the turbulent
motion.

Almost all current stress-transport turbulence modeis,
with the exception of that of Durbin?2, model the pressure-
strain terms and other pressure-velocity correiations en-
tirely as functions of local quantities. (All the other terms
in the Reynoids-stress transport equations are genuinely
local quantities.) This is equivalent to replacing Eq. (8)

by s
p’ aU -2 dv
AR Sl v 22 Jkd
2 Em Fy (9)

- that is, evaluating dU/dy at the position where p' is
required and volume-integrating only dv/dz.

In Ref. 13, the behavior of existing models for the
pressure-strain terms was analyzed, using simulation data
in a duct flow to evaluate the terms directly. The resulits,
surprisingly, suggest that the difference between the ex-
act pressure-strain terms, using p’ from Eq. (8), and the
approximate resuits, using p’® from Eq. (9), is negligibly
small (or, at least, small enough to be hidden in the empir-
ical coefficient in the pressure-strain model) except in the
viscous wall region. Within the viscous wall region, the -
difference between the true pressure fluctuation p’ and the
appraximate pressure fluctuation p’Z is not only very large
but eccentrically behaved. It is not suggested that viscous
effects, arising from the v = 0 boundary condition at the
surface, are directly to blame: it is much more likely that
the effects of the v = 0 boundary condition are mainly re-
sponsible, but it is surprising that these eflects should be
small outside the viscous wall region. A final possibility
is that the changes in turbulence structure with u,y/v in
the viscous wall region are so large as to invalidate local
models.

This suggests not only that standard pressure-strain
models are grossly inaccurate in the viscous wall region,
but also that any extension of a standard turbulence model
into the viscous wall region will be similarly inaccurate.
This inaccuracy can be camouflaged by the insertion of
“low-Reynolds-number” functions, nominally functions of
the wall distance u,y/v. Obviously, if the real fiow scales
with u,y/v, this simple procedure suffices, but if the flow
approaches, or goes beyond, separation then inner-layer
scaling - and presumably “low-Reynolds-number” models
~ break down, even if u,y/v is repiaced by the guaranteed-
real quantity k/3y/v.




10. Chaos

“What kept you?” you may ask. Chaos has been
one of the buzzwords in applied mathematics in recent
years, and turbulence is often cited as the supreme ex-
ample. The complication of turbulent motion, with its
broad spectrum of wavelengths, is far greater than that of
the “chaotic” solutions of some low-order systems of cou-
pled ordinary differential equations. Analysis of simulation
datal* suggests that the dimension of the turbulence at-
tractor (roughly, the number of modes or “degrees of free-
dom” needed to represent the turbulent motion) is several
hundreds at least, even at the lowest Reynolds number at
which turbulence can exist. The upper bound on the di-
mension is, roughly, the number of totally-arbitrary modes
(say, Fourier modes or finite-difference formulae) needed to
represent the motion. Now since direct-simulation calcu-
lations need, typically, 128° = 2 x 10® Fourier or finite-
difference points for flows at a very modest laboratory-
scale Reynolds number, we can take the upper bound of
the attractor dimension as being of this order: for the
bareiy-turbulent flow of Ref. 13, 323 ~ 30000 might do.
Large-eddy simulations need fewer points: 128° might do
for any Reynolds number, at least if the viscous wall region
did not have to be resoived. These are ail impracticably
large estimates of the attractor dimension.

However, several authors have based their work on the
classically incorrect syllogism “Solutions of some equations
with few degrees of freedom yield complicated behavior:
turbulence has complicated behavior: therefore turbulence
may be represented by the solution of equations with few
degrees of freedom”. The last hypothesis of course stood
by itself for many years B.C. (before chaos), and a great
deal of brain power has been applied to prove it - i.e. to
produce a usably small set of modes to describe turbulence
~ but without great success: the most ambitious efforts
require an amount of computing time which is not much
less than that of a large-eddy simulation.

The concepts of chaos theory may of course be quali-
tatively useful in turbulence studies. One is the concept of
predictability. Qualitative arguments about the non-linear
Navier-Stokes equations suggest that if two almost identi-
cal turbulence fields with the same boundary conditions
are set up at time ¢ = 0, then the two instantaneous veloc-
ity and pressure fields will become more and more different
at time goes on, even though the statistical properties of
the two fields will still be (nearly) equal. To a worker
in turbulence, particularly an experimenter, this does not
seem odd - but the issue of instantaneous versus statisti-
cal predictability has attracted a lot of attention in chaos
studies, and perhaps our intuition about the Navier-Stokes
equations may be put on a firnier footing. Deissler!S re-
views applications of chaos studies in fiuid dynamics; for
a popular introduction to chacs studies in general, see the
book by Gleick!®; and see also, of course, the new inter-
disciplinary journal *Chacs’.

11. Conclusions
In this paper, we have gone all the way from very basic

questions of turbulence theory to the important practical
question of the reliability of turbulence models, and then
ended in chaos. The fallacies that we have discussed do not
necessarily form a coherent story, but I think it can be said
that most of them fall into the general category of wishful
thinking - the hope of finding simplie solutions to a difficuit
problem. I will end with one of my favorite quotations,
from H. L. Mencken, “to every difficuit question there is a
simple answer - which is wrong”.
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364-365] Damping of Vibrations in a Spherical Fessel 651

It is to be noticed that the ratio of (8) to (12) is of the order J/(sc/»), numerical factors
being omitted. 1D all canes to which our approximations apply this ratio is large, so thet
the radial vibrations are much more siowly extinguished, 50 far as viscosity alone is con-
cerned, than those which correspond to valuen of » greater than 0. Thisis readily accounted
for. In the latter modes the condition that tbere is 1o be no slipping of the fiuid in contact
with the vessel impliss & relatively grester samount of distortion of the fiuid elementa, and
consequent dissipstion of energy, in the superficial layers of the gas.

The metbod of the dissipation function. which was applied in Art. 348 to the case of
water waves. mught be used to obtain the result (12) for the radial vibrations, but would
lead t0 an erronecus result for » >0, since the underlying assumption that the motion is
only slightly modified by the friction is violated at the boundary.

In the gravest radial vibration we bave ka = 4:493, whenoe

v-'O'I“';.
In the case of air st 0° C. this makes r = '300?°.

Turbulent Motion.

365. It remains to call attention to the chief outstanding difficulty of
our subject.

It has already been pointed out that the negiect of the terms of the
second order (udufoz, &c.) serioualy limits the application of many of the
preceding results to fluids possessed of ordinary degrees of mobility. Tnless
the velocities, or the linear dimensions involved, be very amall the actual
motion in such cases, so far as it admits of being observed, is found to be
very different from that represented by our formulae. For example, when
a solid of ‘easy’ shape moves through s liquid, an irregular eddyving motion
is produced in s laver of the fiuid next to the solid, and s trail of eddies is
left behind, whilst the motion at s distance laterally is comparatively smooth
and uniform.

The mathematical disability above pointed out does not apply to cases
of rectilinear flow, such as bave been discussed in Arta. 330, 331; but even
here observation shews that the types of motion investigated, though always
theoretically possible, become under certain conditions practically unstable.

The case of flow through a pipe of circular section was made the subject
of s careful experimental study by Revnoldst, by means of filamenta of
coloured fluid introduced into the stream. So long as the mean velocity
(10,) over the cross-section falls below a certain limit depending on the radius
of the pipe and the nature of the fluid, the flow is smooth and in accordance

® This Art. is dorived with alight altarstion from s peper eited on p. 636,

t “Aa EBxp ) 1 agetion of the Circums which & i hother the
Motien of Waser shell be Dirves or Sinucus, sad of the Law of Resistanes in Parsllel Channele.”
PAil. Trens. & elnxiv. p. 035 (1883) (Papare. t. 1 p. B1]. Forahi \} ol the b
and partial antisipations of other writers. oo Knibbe, Prec. Roy. Sec. NS.W. ¢ zxxi. p. 34
(1097). Referumos » made in particuiar 10 Hagen, Berl. 40k, 1854, p. 17.
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Abgtract

The e method for predicting transition onset is an am-
plitude ratio criterion that is on the verge of full matu-
ration for three-dimensional. compressible, real gas flows.
Many of the components for a more sophisticated. absolute
amplitude criterion are now emerging: receptivity theory,
secondary instability theory, parabolized stability equa-
tions approaches, direct numerical simulation and large-
eddy simulation. This paper will provide a description of
each of these new theoretical tools and provide indications
of their current status.

1 Introduction

Robust tools for predicting the location of the onset of
transition in boundary layers on aerospace vehicles have
obvious technological importance. For practical engineer-
ing purposes one desires a prediction tool which is quan-
tatively and not just qualitatively correct: the issue is not
whether transition occurs but where. At present transition
prediction tends to be based on simple correlations, such
as crossflow Reynolds number or Reo/M; modified one-
or two-equation turbulence models which seek to trans-
late the freestream turbulence level into computations of
laminar-transitional-turbulent flow; and linear stability
theory.

The pioneering work of Smith & Gamberoni (1] and Van
Ingen [2] introduced an empirical method for estimating
the location of transition onset based on an amplitude ro-
tio criterion. This tool has come to be known as the eV
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method or the N-factor method. The next level of tran-
sition prediction methodology is likely to involve an ab-
solute amplitude criterion. In order to achieve this goal,
many more physical eflects must be taken into account
and more analysis tools must be utilized.

The seeds of transition are the disturbance environment
in which the vehicle operates. Transition is born by the
receptivity process in which the background disturbances
are incorporated within the boundary layer as linear insta-
bility waves. It is nurtured by a relatively long region of
linear instability growth. Once secondary instability ef-
fects develop, they induce rapid growth, and at a suffi-
ciently high amplitude the nonlinear regimes are entered
and transition commences, as signified by, say, the skin
friction or heat transfer rise.

Characterization of the disturbance background is a pre-
requisite for en absolute amplitude criterion. Both ampli-
tude and spectral information are required. This is nec-
essarily an experimental task and will not be addressed
further in this paper.

The theoretical and computational tools which can now
be brought to bear on the transition problem include
Receptivity Theory, Linear Stability Theory (LST), Sec-
ondary Instability Theory (SIT), Parabolized Stability
Equations approaches (PSE), Direct Numerical Simula-
tion (DNS), and Large-Eddy Simulation (LES).

Receptivity theory is a very active area of current re-
search. The essential problem is that the freestream dis-
turbances often have much longer length scales than the
instability waves in boundary layers. Therefore, the incor-
poration of background disturbances into boundary-layer
instability waves requires a wavelength conversion mecha-
nism. A variety of linear and asymptotic techniques have
been applied to this problem. We refer the reader to [3}-[8]
for some recent work in this field. The latter two articles
are particularly concerned with compressible flow.

This paper furnishes a brief description of the remainder




of these tools and provides examples of recent work. We
shall limit ourselves to illustrating these methods for su-
personic flows, and shall highlight some recent results from
the theoretical and computational transition program at
the NASA Langley Research Center.

2 Governing Equations

The starting point for these analysis tools is, of course, the
compressible Navier-Stokes equations. In dimensionless
form the equations for a thermally and calorically perfect
gas are

dp | O(pur) _
a + or; =0
(?u,, 6(u,,u;) _ __];_t?l 1 8o
3 or T plOry pRe dx
op dp Oup 1 O -1
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is the viscous stress tensor,
T
0= 3)
is the heat flux, and
Ou;
@ = -oT'-du (4)

is the viscous dissipation. The Reynolds number is de-
noted by Re, the Prandtl number by Pr, the Mach num-
ber at the boundary-layer edge by M., and the ratio
of specific heats by 4. (For all the examples in this
paper v = 1.4.) In these equations p is the density,
u = (u;,uz,u3) = (u,v,w) the velocity, p the pressure,
and T the temperature. We shall denote the solution vec-
tor by q = (p, u, v, w,p). The coordinate system is chosen
so that x = (z1,22,23) = (z,y.:), where z, y, and z are
the streamwise, spanwise, and wall-normal coordinate di-
rections, respectively.

In this paper, most dependent variables are normal-
ized with reepect. to their boundary-layer edge values; p
ls scaled by p;u; . Distances are scaled by the variable

= (viz*/u )” 2. The superscript * characterizes a di-
mensional quantity, the subscript ¢ indicates a value at the
edge of a boundary layer, u is the streamwise velocity, and
v is the kinematic viscosity. The viscosity, u*, is assumed
to be given by the Sutherland formula.

Although results will be presented here for flat plates,
cylinders and cones, the equations and notation will be
given just for the flat plate. See {9] for the appropriate
equations for the more general situation.

3 Linear Stability Theory

The techniques of compressible linear stability theory
are quite well know; see, for example, [10]. The starting
point is a laminar mean flow, q,. In most cases an approx-
imate mean flow is utilized, e.g., a quasi-parallel solution
of the boundary-layer equations. One must then imagine
that an appropriate forcing term has been added to Eq.
(1). See [11] for a recent discussion. The total flow field,
q(x,t), is written as

a(x,1) = qq(z) + A(qy(:)e’@=+¥=wD ¢ ) . (5)

The streamwise and spanwise wave numbers are denoted
by a and J, respectively, and w is the (temporal) fre-
quency. The complex amplitude function, q,(z), deter-
mines the structure in the wall-normal direction. The
compressible Navier-Stokes equations are then linearized
about the mean flow to first-order in the amplitude A.
When combined with appropriate boundary conditions, an
eigenvalue problem results.

The spanwise wavenumber is invariably taken to be real.
In temporal theory, a is real and w is the (complex) eigen-
value, with w the spatial growth rate. In the spatial con-
cept, w is real and a is the eigenvalue, with —a; the spatial
growth rate. In many cases the simpler temporal theory
is applied, and the spatial growth rate approximated by
—a; = wi/c,, where ¢, is the group velocity of the wave.
The linear instability is referred to as the primary insta-
bility.

Some recent developments for compressible flow include
incorporation of non-parallel effects through multiple-scale
techniques [12], real gas effects [13], proper shock-wave
boundary conditions [14], and clarification of some issues
regarding propagation of three-dimensional waves (15].

The N-factor method is applied by first computing the
laminar mean flow past the body of interest and then
applying LST to that flow. For a given frequency, w,
the streamwise location at which a wave first becomes
unstable, zo, is identified and then the spatial growth
rate is lntegrat.ed downstream to produce the N-factor:
Nw) = f (-o.)d: (Note that if the amplitude of the
instability at z¢ is denoted by Ag, then the amplitude at
z is given by A/Ag = eN(); thus, eN(“) measures the am-
plitude ratio.) This calculation is performed for a range o1
frequencies, and for each z, the maximum over w, denoted




by just N, is taken.

The estimate of transition onset is based upon an em-
pirical correlation between N and the location of transi-
tion. The N-factor n.ethod has had a surprising degree of
success, even considering its limitations, such as inapplica-
bility to flows in a high disturbance background for which
the linear instability regime is “by-passed”. The N-factor
method has matured to the point at which an analysis ca-
pability is imminent for transition estimation across the
speed range (including real gas effects) and for arbitrary
steady three-dimensional mean flows.

The computer requirements for solving a single LST
eigenvalue problem are inconsequential. Even application
of the N-factor method to a three-dimensional mean flow
requires only on the order of an hour of supercomputer
time. However. a non-trivial related task is computa-
tion of an accurate mean flow. LST requires accurate
(and oscillation-{free) mean flows and this is a far more
stringent requirem-ut than is customary in conventional
steady-state CFD. This can take many tens of supercom-
puter hours for a three-dimensional configuration.

4 Secondary Instability Theory

Secondary instability theory picks up where LST leaves
off. In SIT one includes some weakly nonlinear (and three-
dimensional) effects. One considers the linear stability
with respect to secondary disturbances of a base flow com-
prised of a laminar mean flow (assumed locally parallel)
modulated by a small (but finite) ampiitude primary dis-
turbance. SIT is now well-established for incompressible
flow. See Herbert [16] for a thorough review of the subject.
In recent years it has been extended and applied to com-
pressible boundary layers in [17]. [18], [19], and [20). Here
we review some of the developments discussed in [20).

The frequency, wavelength, and shape of the primary
disturbance are obtained using LST. The primary wave
is assumed to have no growth during the evolution of the
secondary disturbance. In a Galilean frame, 2% = z - ¢,t,
moving with the phase velocity, ¢,, of the primary wave,
the total flow variable, q, can be written in the Floquet
form

- -]
Q= qu+ R{e? e itareih et Z Qzj(z)ed ety

j==00
(6)
where q, is given by Eq. (5). Hereafter, the subscripts 0,
b, 1, and 2 refer, respectively, to the laminar mean flow,
the modulated base flow, the primary disturbance, and the
secondary disturbance. The primary wave amplitude, A,
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Figure 1: Variation of 9, with B when A, = 1.6. Funda-
mental at 4 = 2.9%. Subharmonic at A = 1.5%.

is defined so that it corresponds to the maximum value
of the perturbation mass flux. The equations governing
the secondary disturbance are obtained by linearizing Eq.
(1) about the modulated base flow. The discretized dis-
turbance equations are converted into a complex algebraic
eigenvalue problem for o or 4 and their associated eigen-
functions. In temporal theory, ¥y = 0 and ¢ # 0 is the
complex eigenvalue to be determined. In the spatial con-
cept, we write o = q¢, in Eq. (6) and solve for v as the
eigenvalue [16). The temporal and spatial growth rates are
given by the real parts of o and v, respectively. The detun-
ing parameter, h, defines the type of secondary instability.
The subharmonic modes are given by A = 1, while the
fundamental modes correspond to A = 0. In practice the
sum in Eq. (6) includes from 2 to 5§ modes.

As one example, consider the boundary layer over an
insulated flat plate at Mach number A, = 1.6, Reynolds
number Re = 1050, Prandtl number Pr = (.72, and
temperature T, = 216° Rankine. The primary wave
is slightly damped, and is located near branch two of
the neutral stability curve with a; = 0.147]1 and F =
10 x w;/Re = 82.6. For clarity, the secondary growth
rate obtained from the temporal theory, which has been
converted to a spatial growth rate by using the transfor-
mation v, = o,/c,, is termed the “transformed-spatial”
growth rate. In many cases of interest both the dominant
fundamental and subharmonic travel synchronously with
the primary, i.e., 3, = 0.

In Fig. 1, the secondary growth rate is plotted
as a function of the normalized spanwise wavenumber
B = 10° x p; /Re. (For constant boundary-layer
edge conditions, the parameter B signifies a wave of fixed
spanwise wavelength as it propagates downstream.) The
“transformed-spatial” growth rate agrees well with the
(true) spatial growth rate. The most amplified subhar-
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monic disturbance consists of a pair of oblique waves trav-
eling at equal and opposite angles at about 70° to the
mean-flow direction. The most unstable fundamental dis-
turbance is comprised of a stationary mode, which repre-
sents a spanwise periodic distortion of the mean flow, and
a pair of oblique waves propagating in opposite directions
at about 37° to the mean-flow direction.

Figure 2 depicts the typical catalytic effect of the pri-
mary amplitude on the growth rates of the secondary dis-
turbances. The spanwise wavenumbers, B, of the sub-
harmonic and the fundamental are 0.19 and 0.22, respec-
tively; these particular values of B correspond roughly to
the most amplified secondary disturbances. The subhar-
monic instability prevails over the fundamental instability
in an environment with a primary amplitude, A, of less
than about 2.8%, while the converse is true for higher val-
ues of A. The transformed-spatial growth rates of the sub-
harmonic modes are almost identital to the spatial rates
for small A — the former increasingly underpredicts the
latter as A increases from 1.5%.

The preceding behavior is expected, since the use of
temporal data to approximate spatial growth becomes less
accurate when the growth rate is relatively high. Still,
the transformation of temporal data to approximate the
spatial growth rates of fundamental resonance modes is
surprisingly accurate even for a primary amplitude as high
as 4%.

The second example, given in Fig. 3, corresponds to a
laminar boundary layer on an insulated 7-degree half-angle
sharp cone at Af, = 6.8. The parameters are Re = 1939,
T, = 128° Rankine, Pr = 0.70. The primary distur-
bance is axisymmetric and is of the “second mode” type
with a; = 0.2788 and F = 135. The two sets of cal-
culations also serve to contrast the secondary instability
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Figure 3: Effect of the detuning parameteron y. M, = 6.8
and B = 0.135.

arising from a first-mode primary (at Af, = 1.6) with that
arising from a second-mode primary (at M, = 6.8). Over
a range of Mach numbers up to at least 6.8, subharmonic
secondary instability (A = 1) is found to prevail in a low
primary-disturbance environment. This is especially true
for high-speed flows. In particular, as illustrated in Fig.
3, no fundamental instability (h = 0) for M, = 6.8 exists
even for a primary amplitude of 2.625%. In fact, both
the first- and second-mode primary waves associated with
high-speed flows have been found ineffective in catalyzing
unstable fundamenta! resonance modes.

Recent developments in SIT include incorporation of
non-parallel effects (but only for for the evolution of the
primary wave) [17). Ng & Erlebacher [19] have developed
a fairly general capability which allows for oblique primary
waves (important at low supersonic Mach number, where
the most unstable primary is oblique).

SIT has greater computational requirements than LST
- the matrix eigenvalue problems which must be solved
are larger than in LST. Nevertheless, a solution can be
obtained in minutes on a supercomputer.

5 Parabolized Stability Equations

As a consequence of the rapid growth »f the secondary
wave, many harmonic waves, including the mean flow cor-
rection mode, are excited to large amplitudes, and eventu-
ally strongly nonlinear effects ensue; the filow then becomes
transitional. Although SIT furnishes a guide to mecha-
nisms that may be present near transition onset, it does
not at present account for many non-parallel effects, and
it incorporates only the lowest level non-linearity.




0.003C |-

0.0025

0.0020|{

0.0015

0.0010

Crowth Rate

0.0005

0.0000}

~-0.0005

-0.0010

Figure 4: PSE computation of the effect of non-parallel
mean flows for both 2-D and 3-D disturbances of a M, =
1.6 flow at F = 40. (Solid lines are from parallel LST,
dashed lines from PSE calculations, and symbols are from
multiple-scales analysis [12].)

One efficient method which does incorporates both non-
parallel and non-linear effects is the parabolized stabil-
ity equations approach, first suggested by Herbert and
Bertolotti [21], [22]. The PSE method facilitates the so-
lution of the full partial differential equations for the dis-
turbances by employing a partial parabolization along the
dominant flow direction. In this approach, the disturbance
is decomposed into a wave part and a shape function part.
The elliptic terms are retained for the wave part, whereas
the governing equations for the shape function are parab-
olized in the streamwise direction. The parabolized equa-
tions for the shape function are then solved numerically by
a marching procedure. The wave properties are extracted
from a local analysis. Nonlinear terms are formulated as
forcing functions for the corresponding linear equations.
Because the equation set contains non-parallel as well as
noniinear terms, the PSE method governs the spatia! evo-
lution of disturbances from the linear stage up to the tran-
sitional stage.

The PSE approach has been successfully applied to the
stability of supersonic two-dimensional boundary layers by
Bertolotti & Herbert (23] and Chang et al. [24]. In the
linear regime, the method provides a means to include non-
paralle] effects due to the growth of the boundary layer,
which is ignored in traditional LST. Furthermore, non-
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Figure 5: PSE amplitude evolution of the primary and
subharmonic waves at M, = 1.6, F = 50, and B = 0.053.

linear effects such as wave/wave interaction or secondary
instability can be simulated by the non-linear PSE.

To demonstrate the applicability of the PSE approach,
we present some of the results given in {24). Linear
PSE calculations were performed for a Mach 1.6 flat-plate
boundary layer previouslv studied by El-Hady [12]. The
frequency of- the disturbances is F = 40. Calculations
were performed for both 2-D and 3-D linear disturbances;
the wave angle for the oblique, 3-D waves was about 50°.
The growth rate of the mass flow fluctuations from the
PSE calculations together with the multiple-scales results
are plotted along with the growth rates obtained by quasi-
paralle! LST in Fig. 4. PSE resuits agree quite well with
those obtained from the multiple-scales approach. The re-
sults also indicate that for the first mode disturbance at
Mach 1.6, flow non-parallelism has more effect on three-
dimensional disturbances than on two-dimensional ones.
The non-parallel effect on oblique waves is qualitatively
very similar to that in incorpressible flows, as found by
Bertolotti [21].

Compressible non-linear PSE computations for sec-
ondary instability mechanisms and the subsequent start
of laminar breakdown have also been demonstrated . The
flow is again a Mach 1.6 flat-plate boundary layer with a
primary disturbance frequency of F' = 50. The free-stream
temperature is 540° Rankine and the Prandtl number is
Pr = 0.71. Figure 5 shows the evolution of primary and
subharmonic disturbances for various initial amplitudes of
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Figure 6: PSE amplitude evolution of various Fourier
modes for a M, = 1.6 fundamental breakdown

the primary waves (the subharmonic amplitudes are the
same for all three cases). The spanwise wave number of
the subharmonic mode is fixed at B = 0.053, which corre-
sponds to an oblique wave angle of 45°. As can be seen, a
1.1% initial amplitude for ¢he primary mode is enough to
trigger the secondary growth.

Non-linear PSE calculations were also performed for the
same Mach 1.6 case but for a fundamental-type secondary
resonance. The initial amplitude of the primary wave is
again 3% and that of the secondary is taken to be 0.005%.
The spanwise wave number is B = .152 (oblique wave an-
gle of 60° for the secondary wave) and the primary wave
frequency is again F = 50. The non-linear evolution of
the maximum rms amplitude of u’ (a prime is used to de-
note the fluctuating part of a variable) is shown in Figure
6. Clearly, the presence of the primary 2-D and secondary
3-D disturbances resuits in wave resonance and strong sec-
ondary growth of the oblique wave. When the secondary
disturbance is amplified to about the same amplitude of
the primary wave, all harmonics are excited and the flow
becomes transitional. This is confirmed by plotting the
average wall shear in Figure 7. The computed wall shear
is only slightly above the laminar value for most of the
computational domain. (The PSE wall shear lies above
the lJaminar value right from the beginning because of the
relatively high initial amplitude of the 2-D primary dis-
turbance.) Eventually the wall shear departs sharply from
the laminar value, indicative of transition onset. Thus, the
PSE computation captures the skin friction rise, which is
one of the criteria for transition onset; accurate predic-
tion of its location is a prime goal of transition prediction
methods.
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Figure 7. PSE wall shear of laminar and perturbed flows
for a M, = 1.6 fundamental breakdown.

Linear PSE computations (equivalent to non-parallel
LST) are quite cheap. Nonlinear PSE can compute up
to the skin friction rise in no more than an hour of su-
percomputer time. However, current numerical techniques
for nonlinear PSE have computational requirements which
scale quadratically with both the number of spanwise
Fourier components and the number of temporal frequen-
cies retained in the approximation. This means that PSE
computations for the later stages of transition and for ran-
dom inflow and/or freestream conditions are exceedingly
expensive.

The SIT and PSE tools that have been described up
to this point are oriented towards forced transition, i.e.,
transition characterized by sharply defined frequencies as
might occur from specific forcing. The technologically in-
teresting problem is that of neiyral transition, for which
a broad range of frequencies is present. To capture the
nonlinear interaction between a wide range of frequencies,
DNS and LES are currently the ri.ost appropriate tools.

6 Direct Numei'ical Simulation

Direct numerical simulation solves the time-dependent,
three-dimensional, nonlinear, Navier-Stokes equations
subject to prescribed initial and boundary conditions with-
out recourse to empirical models. A thorough review of
this approach has been given by Kleiser & Zang [25].
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Figure 8: Spatial SIT vs. DNS for a M, = 1.6 fundamental
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When attacked as the total boundary-layer transition
problem - from receptivity through fully-developed tur-
bulence - the non-parallel, spatial formulation is certainly
more appropriate than the temporal approximation. How-
ever, DNS for the complete transition process is an exceed-
ingly expensive tool even for the low Reynolds numbers
to which it is of necessity restricted. Gilbert & Kleiser
[26] performed the first well-resolved simulation of the
complete transition to turbulence and this took several
hundred supercomputer hours for a temporal computa-
tion of forced incompressible transition. With somewhat
relaxed resolution requirements Rai & Moin [27] have re-
cently computed bypass transition for low-speed flow past
a flat plate. This required many hundreds of supercom-
puter hours and it remains to be seen what the require-
ments are for a well-resolved computation for this problem.
For the foreseeable future, both temporal and spatial DNS
have a role, but this tool ought to be applied selectively.

One role for DNS is the corroboration of simpler tools,
such as SIT and PSE. For compressible flows it has been
used to verify temporal SIT [19], [9], spatial SIT [20], and
some aspects of nonlinear PSE [24]. Given the algebraic
complexity of SIT and PSE, particularly for oblique pri-
maries, this role is a needed one to establish confidence in
them. (It also furnishes a stringent calibration of DNS.)

One comparison between spatial (but quasi-parallel)
SIT and DNS by Ng & Zang [20] was performed for a
fundamental type instability at M, = 1.6, Re = 613,
Pr = 0.70, and T, = 520° Rankine. The primary wave is a
2-D first mode with frequency F = 73. The subharmonic
secondary wave has spanwise wavenumber B = 0.1465.
The amplitude of the primary is chosen to be 6%, while
that of the secondary is 0.1%. Although the spatial DNS
code is designed for non-parallel flow, for comparison with
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Figure 9: Evolution of selected harmonics from DNS of
M, = 4.5 cylinder subharmonic transition.

the quasi-parallel SIT theory the mean flow was con-
strained to be parallel by using a forcing function. The ini-
tial conditions consisted solely of the laminar mean flow.
At the inflow boundary, z* = zg = u:L‘a /ve, the flow
consisted of the mean flow plus the appropriate contribu-
tions from the linear and secondary eigenfunctions. The
physical domain consisted of 8 wavelengths of the pri-
mary wave, with “buffer domain” modifications (28] to the
Navier-Stokes equations in the last 2 wavelengths used to
ameliorate potential difficulties with the outflow boundary
conditions. (See [20] for details.) Figure 8 shows the span-
wise velocity component, v, at z = 0.26*, where §* is the
displacement thickness, and G,y = x/2 after 10 periods of
forcing; this component is due solely to the secondary in-
stability. The agreement between the DNS and SIT results
is excellent, except, of course, in the buffer domain.

This computation utilized 12 points per streamwise
wavelength. For transition in high-speed flows the growth
rates of both primary and secondary disturbances are
lower than for incompressible low. As a consequence on
the order of 102 wavelengths would be needed to follow the
primary/secondary stages from about the 1% level to the
skin friction rise. This is a prohibitive expense and argues
strongly for the use of simpler methods such as SIT and
especially PSE for routine application to the early stages
of transition.

The unique niche for DNS is the highly nonlinear, lami-
nar breakdown stage and the subsequent transition to tur-
bulence; for this the non-parallel effects appear to be less
significant than they are for the rather lengthy primary
and secondary instability stages. These early stages are
nowadays treated far more efficiently by SIT and PSE ap-
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Figure 10: Skin friction and shape factor from DNS of
M, = 4.5 cylinder subharmonic transition.

proaches than by DNS. Indeed, the simpler theories can
well be used to set the stage for the DNS: LST selects the
dominant primary instability (and determines the relevant
streamwise scales); SIT and/or PSE select the dominant
spanwise scales and can be used to “jump start” the DNS
at fairly high disturbance levels.

This is the approach that was taken by Pruett & Zang
[29] in their temporal DNS of transition in Mach 4.5 flow
past a cylinder. The primary disturbance was a second
mode and the secondary disturbance was of subharmonic
type. Due to the periodicity assumptions in the stream-
wise (z) and spanwise (y) directions, the dependent vari-
ables have Fourier series representations in these direc-
tions. A useful measure of the strength of a given Fourier
harmonic is

Ek,,k,(t)=dk.dk.[) po(z) ik, k, (2, )Pz,  (T)

where u;, i, is the Fourier coefficient of the velocity cor-
responding to wavenumbers k. and k, {with respect to a;
and 33, respectively;

de =2 - o (8)

accounts for some of the symmetries in the problem. The
quantity Ej, i, is approximately the kinetic energy of the
(kz, ky) mode.

Figure 9, taken from [29], summarizes the time evolu-
tion of the principal modes for the Mach 4.5 cylinder sim-

Figure 11: Cartoon of the precursor transition effect (top)
[30] and its manifestation in the spatially-reconstructed
Reynolds stress from DNS of M, = 6.8 cone subharmonic
transition (bottom).

ulation. (Time is reckoned in units of the period of the
primary wave.) The DNS proceeded through the stages
of primary/secondary instability then underwent weakly
nonlinear and strongly nonlinear stages, and finally com-
menced laminar breakdown. The stages cited above last
from 0-15, 15-35, 35-45 and 45-60, respectively. The sym-
bols on the figure are the predictions from LST and SIT
for the growth of the primary and secondary disturbances.
They are in good agreement with the DNS. One interest-
ing feature of this simulation is the prominence that the
(0, 2) mode assumes in the latter stages of transition. This
mode is not present in the initial conditions (nor in SIT)
and is generated by nonlinear effects. Additional DNS
have revealed that this mode plays an essential role in the
final laminar breakdown.

Figure 10 shows the evolution of the skin friction, Cy,
and the shape factor, H, for the Mach 4.5 cylinder tran-
sition. This simulation was stopped at about 60 peri-
ods because of strong gradients that even its million grid
points could not resolve. Indeed, the judgment of Pruett
& Zang [29] was that the resolution became questionable
after 55 periods. This resolution problem intensifies as
Mach number increases, and in a particular computation
may eventually manifest itself in negative values of some
of the thermodynamic quantities. This particular diffi-
culty does not arise for low-speed DNS. For compressible
flow the dilemma is that highly-accurate central-difference
schemes do not have sufficient artificial viscosity to resolve
strong gradients at high Reynolds number, whereas con-
ventional upwind CFD schemes are so dissipative that they
corrupt the delicate physics of transition. An encourag-
ing recent development is the work of Atkins {30], which
demonstrated good results for a compressible free shear
layer transition using a fifth-order ENO scheme.

The shape factor plot suggests that the simulation




Figure 12: Experimental (top) [32] and DNS (bottom)
[25] visualizations of the rope-like structures in supersonic
transition.

has proceeded almost completely through the transition
process. Figure 11 presents the spatially-reconstructed
streamwise velocity fluctuations, as represented by the
Reynolds-stress component 7y; = —pu'u’, from a Mach
6.8 cone simulation [29]. These exhibit the so-called “pre-
cursor transition effect”, sketched in the cartoon in the top
part of the figure, whereby the transition originates near
the boundary-layer edge and gradually propagates toward
the wall. This same effect is.present in the DNS. Flow-
field visualizations presented in Fig. 12 demonstrate the
presence in the Mach 4.5 cylinder DNS of the “rope-like
structures” that have been observed in numerous experi-
ments ([31],(32], [33]). One of the more significant conclu-
sions of [29] was that the rope-like structures are actually
manifestations of SIT and not LST, as had long been sus-
pected.

A last sample of results from this DNS is presented in
Fig. 13. It illustrates the evolution of the turbulent kinetic
energy, k, and the turbulent dissipation, ¢, through the
transition region. This kind of iuformation, supplemented
by detailed information on the key terms in the evolution
equations for these quantities, has the potential to lead to
substantial improvements in two-equation models for tran-
sitional flow. However, DNS (particularly spatial DNS) is
so computationally intensive that a less drastic, but still
effective, tool for exploring the later stages of transition
would be quite desirable. The following section describes

z'/8
Figure 13: Evolution of turbulent kinetic energy and dis-
sipation for M, = 4.5 cylinder subharmonic transition.

a promising candidate.

7 Large-Eddy Simulation

In large-eddy simulation the small scales of the flow are
modeled in terms of the large-scale flow. The Reynolds-
averaged Navier-Stokes equations, in contrast, model the
higher-order moments in terms of the lower-order mo-
ments. In LES the flow variables are decomposed into
a large-scale (resolvable) component and a small-scale
(subgrid-scale) component. LES was originally developed
for turbulent flow (see [34] for a survey of the state-of-
the-art in LES), and, at least with the more established
subgrid-scale (SGS) models, some refinements have proven
necessary to handle transitional low properly. In the tran-
sitional case one not only wants to have a model which
works well for the final turbulent state, but also one which
captures the primary, secondary and nonlinear stages cor-
rectly (without, for example, exerting excessive damping
of the instability waves), predicts well the location of tran-
sition onset, and makes good predictions from transition
onset through the transitional zone to the fully turbulent
state. Piomelli and co-workers ([35], [36], [37], [38]) have
led the effort to utilize DNS of transition to calibrate and
refine SGS models for this process. This work has to date
been confined to incompressible flow. In this section we
describe some recent developments for compressible tran-
sition modeling via LES.




The large-scale field is defined by the filtering operation:

F) = [ G x)F)I, )
where the integral is extended over the entire spatial do-
main and G = G1G2Gs, where Gi(z;) is the filter func-
tion in the ith direction. For the velocity and tempera-
ture, Favre filtering is utilized: F = F + F', where F'
is the SGS part of F and the Favre filter is defined by
F = pF/p. The sharp Fourier cutoff filter is chosen for
this work because »f previous experience with this filter in
LES of incompressible transition ([35)).

The dimensionless governing equations for compressible
LES are

Jp B(Puk) =0
at dxy
opis) | (i) _ _ 0B  O%u dna
ot 3.‘:{ = 61:), azz a-‘n
0p D Oty _ 1 g
o T %5, T P g, = M2PrRe Oz
y-1= 1 0Q: op 1\a dp
+— Re —d 4 M2 Oz2 + (v - Dug 3z, (v ”“"az
yM2p=7pT. (10)

The SGS stress tensor X Thi and the SGS heat. flux Q,, are
defined by = —p(uku; Ut + uku;+u,uk+u u,) and
Qi = —p(ukT — T +u,T+ T + u,T).

There have been a number of SGS models proposed for
compressible LES ([39],[40], (41],(42]). Two of these mod-
els have been applied to the Mach 4.5 transition problem
discussed in the preceeding section.

The first SGS model considered is the SEZHu model
derived by Speziale et al. [40] for compressible isotropic
turbulence. This model has been chosen because there
are now available some extensive a posteriori comparisons
of its performance on compressible, isotropic turbulence
([44], [45]). Following the work of Piomelli et al. [46], only
the Smagorinsky portion of the SEZHu model is used with
the Fourier cutoff filter. (This filter is applied in z and y;
no filtering is applied in the inhomogeneous z direction.)
Hence, the SGS stress model is of the form

=2CRDrp A% ITY? (5., - %S'mmékl) , (1)

and the SGS heat flux is given by

_ CRDFp 2 1/23T
Qe = -5 LAy o (12)
where .
D= (1-e"1), (13)

Sk = (i /Oz) + By /Oxk) /2 is the Favre-filtered rate-
of-strain tensor and II§ = Siun Smn is its second invariant.
Cr is the compressible Smagorinsky constant, Prr is the
turbulent Prandtl number, and A = (AzAyAz)Y/3. The
function I' is an intermittency-like term that turns itself
on slowly in the transitional zone [35]. Eq. (13) represents
a Van Driest wall damping and z* indicates a wall-normal
distance made dimensionless by the wall shear velocity and
kinematic viscosity.

The second SGS model considered here is the structure
function model [43], which is based on a physical space
implementation of the concept of spectral eddy viscosity.
Some results for this model have been reported for a spa-
tial LES of a Mach 5 boundary layer [41]. The structure
function model is of the following form for the SGS shear
stress and heat flux:

= lg
Tkt = CnDFﬁAJ:\/_z (x, Az, Ay, t) x (bu - §5mm5kl)
(14)
Qc = - _CRDFPA‘ V2 (x, 82, 89,0025 a (15)
where
Fy= (Jha(z + Az, y, 2,t) - u(z, y, z,t)|?

(2, y, z,t) — u(z — Az,y, z,t)||

+ + e

A
=, lu@ v+ 2420 = u@z, v, 2.0
+ “u(t,y,:,t)-u(Ivy‘Ay:Zyt)“z)) . (16)

Although neither Van Driest wall damping nor the inter-
mittency term were in the structure function model as
used in [41], they were added here as they seem to furnish
better results.

The structure-function SGS model was tested a poste-
riori both with and without the “intermittency” function,
and a comparison is given in Fig. 14 for the primary and
secondary components. (In the latter case ' = 1.) The
coefficients for these runs were Cp = 0.06, which is the
value recommended in [41], and Prr = 0.70. The LES
used 10* grid points, two orders of magnitude fewer than
the DNS. The original structure function model is clearly
far too dissipative in the early stages, whereas the modi-
fied model agrees very well with the high-resolution DNS.
In this respect these results are similar to those reported
in [35] for the original and modified Smagorinsky model
when applied to incompressible transition. The integral
properties are in quite good agreement with those of the
high-resolution DNS up to T = 55; they are summarized
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Figure 14: Comparison of unmodified and modified struc-
ture function for LES of M, = 4.5 cylinder transition.

in Figure 15. Note that the computation reaches the fully
turbulent regime.

For the SEZHu model the nominal coefficient is Cg =
0.011 [44]. However, on the same grid as was used for
the previous LES computations this had to be increased
to Cp = 0.50 in order to compute all the way through
to turbulence. The reason for this is not entirely cleer at
present. It might be that the larger value of the Smagorin-
sky constant serves to provide artificial viscosity needed to
stabilize the computation, or it might be due to the much
smaller length scales involved in second mode transition.
The later stages of the DNS suggest that for the turbulent
state the computational box, in wall units, was 240 in z
and 150 in y, as opposed to typical values from incom-
pressible flow of 2000 and 1000, respectively.

Kral & Zang [47] have performed some LES of a Mach
4.5 turbulent boundary layer with computational domains
closer to the standard incompressible sizes. Here they
found that reasonable results could be obtained with the
constants Cr closer to the accepted incompressible values.
It appears that application of the dynamic eddy viscosity
concept [37] to this problem would be quite fruitful.

The potential of LES for transition is that it permits
computations through the transitional zone at an order of
magnitude or more lesser expense than for DNS. A discus-
sion of what sort of information can be reliably provided
by LES and DNS is given in [48]. For incompressible flow,
demonstrations are needed for spatial transition; for com-
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Figure 15: Evolution of skin friction and shape factor for
LES of M, = 4.5 cylinder transition.

pressible flow, the role of the SGS viscosity needs clarifi-
cation: To what extent is it furnishing artificial viscosity
rather than serving its intended purpose of modeling the
physics?

8 Prospects

The past several years have witnessed many exciting de-
velopments in transition research, particularly for com-
pressible flow, that make an absolute amplitude criterion
for prediction of transition onset a tantalizing prospect.
Many of the components of such a methodology have been
discussed in this paper. LST technology is virtually com-
plete for real configurations. SIT is likely to be absorbed
within PSE. The scope of PSE needs to be vastly increased
and it would greatly benefit from a firmer mathemati-
cal foundation. DNS will no doubt undergo algorithmic
improvements and take advantage of increased computa-
tional power. LES will likely evolve through several gen-
erations of SGS model improvements.

The philosophy, not only for transition prediction, but
also for basic research into transition physics, ought to be
to apply to each stage of tramsition or to each physical
problem the most economical and revealing method in the
transition prediction toolkit.
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Abstract

The accurate prediction of laminar/turbulent
transttion 1s one of the fundamental problems in
engineering flutld mechanics. There 13 almost
unanimous consent that such a transition criterion
should come from stability theory. Linear primary
stabi1ity theory describes the 1initial stage of
transition, but falls short of predicting transi-
tion. Only in conjunction with empirical correla-
tions, the widely used e" method 1s obtained,
which, however, lacks a solid physical base.
Three-dimens ional secondary instabilities are known
to play in important role in the transition pro-
cess. However, no use has been made so far of
secondary instabilittes, instability interactions
or wave resonances to define a “transition
location."®

The paper summarizes new attempts to identify
certatn interaction and resonance phenomena within
the laminar-turbulent transition regime in two-
and three-dimensional boundary layers which are
assoctated with rapid structural and temporal
changes of fluctuations beyond their exponential
growths.

At first, a numerical bifurcatton analysis for
Blastus boundary-layer flow on a flat plate will
be presented. Using the parallel-flow approxima-
tion, two-dimensional, wave-itke finite amplitude
solutions have been computed. This resulted in the
neutral surface of two-dimenstional nonlinear
Tolimien-Schlichting waves. The computation of
three-dimensional secondary instabilities for this
two-dimensional neutral surface led to an exciting
discovery: a direct 1:1 internal resonance between
amplified, phase-locked secondary instability modes
is possible. This implies a t - exp(ot) Dehavior

for temporal amplification (o being the temporal
amplification rate). Varying the Reynolds number,
the amplification rate of this resonance point
changes from being damped (o < 0) to being ampli-
fied (o > 0). The Reynolds number corresponding to
the cross-over point appears to be related to the
experimentally observed transition Reynolds number
in a low-disturbance flow. Therefore, this reson-
ance would not only explain the explosive start of
transition but also a physically satisfactory cri-
terion for transition prediction without recourse
to empirically determined constants.

On the other hand, for three-dimensional bound-
ary layers, the domtnating role of crossflow vor-
tices s well-known. Nevertheless, very little is
known about their Ainteraction with fluctuations
giving rise to spatial distridbutions of thelr rms-
values. Such theoretical investigations of pos-
sible secondary instabilities of a three-dimen-
stonal boundary layer accompany a basic transition
experiment, which is being performed at the DLR in
Gottingen. Primary stationary and secondary non-
stationary disturbances are used to model the mean
flow and the fluctuations of a measured (quasi-)
saturation state. The analysis s based on a
falkner-Skan-Cooke approximation of the undisturbed
flow. A secondary stability approach selects the
proper waves amongst the spectrum of amplified
disturbances in order to model the dominating
interactions. Good agreement of the secondary
stability mode) with this experiment 1s obtained,
especially concerning the spatial distribution of
the rms fluctuation. However, so far a striking
change of the vortex pattern due to secondary
instability has not been observed for three-
dimensional boundary layers.
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Abstract

The el-method 1s employed with the spatial
amplification theory to compute the onset of tran-
sition on a swept wing tested in transonic cryo-
genic flow conditions. Two separate eigenvalue
formulations are used. One uses the saddle-point
method and the other assumes that the-amplification
vector 1s normal to the leading edge. Comparisons
of calculated results with experimental data show
that both formulations give similar results and
indicate that the wall temperature has a rather
strong effect on tnhe value of the n factor.

1. Introdyction

In the absence of leading-edge contamination
and Gortler 4instability, 1t 1s well known that
transition on swept wings may occur either due to
streamwise instability (related to the properties
of the streamwise velocity profile u) or cross-
flow instability (related to the properties of the
cross-flow velocity profile w). Since the
u-profiles look 1ike Falkner-Skan profiles, the
streamwise 1instability s similar to that of a
two-dimensional flow and leads to turbulence in
flows with positive pressure gradient. On the
other hand, the development of a cross-flow pro-
f1le 1s characterized by an inflectional instabil-
i1ty that can induce transition 1n flows with a
negative pressure gradient.

In order to design new aircraft wings, one must
be able to predict transition on swept wings. The
most gopular method for predicting transttion 1is
the e"-method, which uzs initilally developed for
two-dimensional flows':¢. This method s based
on the solution of the Orr-Sommerfeld egquation
using either temporal or spatial amplification
theory. In efither approach the integrated ampli-
fication rates A/Ag of the unstable frequencies
are determined, and transition 1s computed on the
assumption that 1t occurs when the ratio A/A, of
the locally most unstable wave reaches a critical
value e", with n between 8 and 10 for a low dis-
turbance environment.

In the extension of this method to three-
dimensional flows, both temporal and spatial
amplification theortes can again be used. 1In the
former case, the eigenvalue problem involves five
scalars o, B, wy, wy and R and in the latter case
1t involves six scalars oy, ay, B, By, w and R.
In both approaches, the solution procedure is con-
siderably more difficult than 1ts counterpart in
two-dimensional flows because the nontrivial solu-
tion of the linear stability equations in three-
dimensional flows provides only two relations

between the eigenvalues o, 8, w and R.
transition for example, 4in spattal amplification
theory, « and R are prescribed, 5o two new rela-
tions between a and § are required before the solu-
tion of the 1linear stability equations can be
obtained.

To predict

To date, most problems of the three-dimensional
transition problems employing 1inear stability
theory have been treated by using the temporal
theory. When R and o, are specified, the values-{f
a and w3 are not unique, since they both are func-
tions of B {a = a(B) and wy = wy(B)]. A possible:
solution is to determine the wave number direction
v = tan-1(B/a) for which wy s maximum and inte-
grate oy along the group velocity direction accord-
ing to Gaster's transformation”. This “envelope
method® 1s one of the u?roaches used in the COSAL
code developed by Malik.

In spatial theory, the introduction of an addi-
tional scalar in the dispersion relation makes the
problem more difficult: the amplification rate vec-
tor 1s no longer a scalar; it s a function of
both o4 and By. As a result, a new relation is
needed 2:\ the eigenvalue formulation.

In this paper we consider two completely dif-
ferent eigenvalue formulations and compare their
predictions with measurements. The first formula-
tion 1s based on the wave packet theory (saddle-
point method) and the second is based gn the as-
sumption that the amplification vector is normal
to the wing leading edge. The experimental data
correspond to measurements obtained at ONERA/CERT
for a transonic swept wing. The tests have been
conducted in a cryogenic wind tunnel at very low
stagnation temperatures.

The following section describes the calcula-
tion method employing both eigenvalue formulations.
Results are presented in the third section and the
predictions of both methods are compared with mea-
surements. The paper ends with a susmary of the
pore important conclusions.

2.0 Description of the Computational Methods

The compressible stability equations and their
boundary conditions are well known and are given
in several references, see for example Ref. 4.
With the parallel flow approximation, they can be
written in the following dimensionless form:

Continuity:
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The above equations can be expressed as a first-
order system by defining the following new vari-
ables with primes denoting differenttation with
respect to y,

- - - - -
Z, = au + fw, 22 = aqu' + BW', z3 sV, z. 3

™,
2 = T, = T. Zy = oW - Bu, g = ow' - a&~
(n
In terms of these new variables, Egs. (1) to (6).

for a three-dimensional compressible flow can be
written as

' =82 (8)
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with 1ts nonzero elements given in Appendix 1




The solution of Eq. (8) subject to the boundary
conditions given by

y'oﬁ 21.1332511700

(10)
yoe, 2y, 23, 25, 27+ 0
can be obtained with “wo separate eigenvalue formu-

lations as described in the following two subsec-
tions, 2.1 and 2.2.

2.1 Eigenvalye Formylation Based on the Direction
f the 1ficat ector (ONERA/CERT Method

The basic as;unption of this method, first
proposed by Mack,’ 1s that on a wing with x and
z denoting the coordinates normal to the leading
edge and spanwise direction, amplification only
occurs in the x-direction and not in the spanwise
direction; that 1is, ¢

Thés assumption, formulated for an Infinite swept
wing, reduces the rumber of unknown eigenvalues in
the spatial theory from six to five, With o and
R given in the transition prediction problem, the
unknown eigenvalues correspond to o4, ap and Bp.
For an assumed B,, the wave number o 1s then calcu-
lated so that the amplification rate ay can be
determined. Additional calculations are then per-
formed for different values of 8, in order to
determine the maximum amplification rate. This
procedure, as 1in the saddle-point method, 1s
repeated for each x-station and the n-factor in
the e™-method 1s calculated from

X
ne- ] (ay)g,, 0% (12)
]

0

for different specified frequencies. Here xq
corresponds to the x-station where the stability
calculations are initlated. Transition is assumed
to occur for the frequency for which the locally
most unstable disturbance reaches 3 value of n
between 8 and 10.

2.2 Eigenvalue formylation Based on the Saddle-
Point Method (CSC Method)

The Cebeci-Stewartson-Chen (CSC) method was
first proposed and used by Cebect! and Stewartson
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and s described in some detail in Ref. 7. In this
method the relationship between the two wave num-
bers a and 8 1s not assumed but computed from the
requirement that 3a/3g is real. According to this
requirement, the wave orientation and growth direc-
tion of the disturbance are given by

2o

(3l)u,R

= -tany = - f (13)

where vy denotes the angle that the disturbance
makes with the x-axis, o« and B are related by
€q. (13) and the disturbance propagating along the
ray s given by the two terms on the right-hand
side of €q. (13). The disturbances are damped if
the ampl1ification rate r defined by

da

F=a - 31 (aa)o.l! (14)
1s > 0, neutral 1f r = 0, and amplified If I < 0.
Once o and 8 are computed with the constraints of
Eq. (13), the amplification rate is obtained from
Eq. (14); additional calculations are then made for
different values of 23a/38 so that new values of a
and B are calculated to determine the maximum value
of . Further details of the solution procedure
are given in Ref. 8.

3.0 Resylts and Discyssion

3.1 Experimental Condition

The experimental data used in our studies cor-
respond to laminar flow on a 15-degree swept
tapered wing. The chord s 0.228m at the root and
0.145a at the t4p. The wing has a span of 0.39m
with an AS409 cross-section and a trailing-edge
sweep angle of three degrees. The height of the
hollows on the wing 1s Jess than 0.05 mm (from
peak to valley) for a chordwise extent of about 2
cm. In order to avoid the need to perform full
three-dimensional stability/transition calcula-
tions, the measurements discussed in Ref. 9 and
summarized in Ref. 10, were carried out under
infinite swept conditions with the wing having a
mean sweep angle of 12 degrees at an angle of

attack of 0.3 degrees. The computations were made
at a mean chord of 0.186m.

Figure 1 shows the Mach number distributions
measured at different Reynolds numbers for a free-
stream Mach number of 0.74 at two stagnation pres-
sures. As can be seen, the Mach number distribu-
tion has "bumps® around x/c = 0.3 and 0.47 caused
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by small hollows in the model. On the lower sur-
face, a smooth bend around x/c = 0.20 1s visible.
These discontinuities are common for all experi-
ments and their effects on transition were part of
the 12ves(t)19ation conducted and discussed in detall
in Ref. 10.

Figure 2 shows the variation of the experi-
mental wall temperature distributions along the
chord. Each distridbution s referenced to 1ts
temperature, T4y, measured at the first thermo-
couple in the flow direction. The maximum relative
difference between the wall and freestream temper-
ature 1s 5 degrees, which indicates that the influ-
ence of a nonadiabatic wall on transition must be
considered. This includes the relative undulation
as well as the absolute wall temperature.

fFigure 3 shows the variation of the drag coef-
ficient with Reynolds numbers at three stagnation
pressures and several stagnation températures.
Since the drag coefficlent increases significantly
for a turbulent boundary layer, 1t can be used as
an indicator of transition. The evolution of C4
was measured in the cryogenic, transonic wind tun-
nel, T2, at ONERA/CERT for different stagnation
pressures (1.7 to 2.5 bars) and different stagna-
tion temperatuyres (between 165 and 109K). The val-
ues of Cq were obtained from wake measurements.

In the present study we consider two runs cor-
responding to 42 and 79, with Run 42 having a
stagnation temperature of 145K and a stagnation
pressure of 2.0 bar. The influence of higher temp-
erature at a higher pressure is examined with run
79, which has a stagnation temperature of 165K and
a stagnation pressure of 2.5 bar. In both cases
we calculate only the upper surface of the wing.
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Additional studtes are in progress for run 60,
which has a stagnation temperature of 134K, and a
stagnation pressure of 2.0 bar. These studies wil)
be reported separately. ;

Figure 4 shows the experimental transition
locations for runs 42 and 60. The location of
transition was determined from the change of the
wall temperature measured by thermocouples, along
the chord, resulting from the different heat
fluxes for laminar and turbulent flow. For run
79, the location of transition was assumed to be
the same as that of run 42 because of the simtlar
drag coefficient and Reynolds number (Fig. 3).
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3.2 Calcylations with the ONERA/CERT Method

A detalled discussion of the calculations for
the experimental work described in the previous
subsection 1is opresented in Ref. 10. In this
subsection we present results for runs 42 and 79
for Mach number distributions containing “bumps®
around x/¢ = 0.3 and 0.47 caused by small
hollows 1in the model and compare them with the
calculations employing the CSULB method 1n subsec-
tion 3.3. Studies are in progress for Mach number
distributions without bumps and will be reported
separately.

The boundary-layer and stability calculations
for run 42 were performed for an adlabatic wal)
and specified wall temperature distributions at a
Reynolds number of 12.8 x 108. Figure 5 shows
the predictions of the OMNERA/CERT method for the
adiabatic wall case together with the measured Mach
number distribution (Fig. S5a) used in the boundary-
layer calculattions for a stagnation temperature of
145K and a stagnation pressure of 2.0 bar. Accord-
ing to Fig. 4, the location of transition corres-
ponds to x/c = 0.47.

The calculated n-factors shown in Fla 5b were
obtained for seven freguencies which can be
classifted in three groups: (1) the high ones from
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15 to 30 kHz, (2) the range from 9 to 15 kHz, and
(3) the low ones from 2 to 9 kHz. Beginning with
high frequencies, the calculations indicate rather
strong undulations of n and of the wave directions
w? (Fig. Sc) along the chord. The undulations
of n increase with frequency and show a strong
dependence on the pressure gradient. Excluding
the reglon of high rise of Mg (x/c = 0 to 0.06,
the following mechanism can be observed. A rela-
tive low pressure gradient has a stabilizing
effect, whereas a higher, even positive pressure
gradient 1s destabil1zing. This effect becomes
more and more distinct with increasing x/c. Look-
ing, for example, at the n-curve with frequency
30770 Hz, we can see that the relattive low pressure
gradient between x/c = 0.06 and 0.2 leads to an
almost constant n. The increase of dp/dx between
0.2 and 0.3 leads to a strong rise of n. The
steeper Mach number distribution from x/c = 0.3
to 0.4) leads to a restabilization. The process
1s repeated as the pressure gradient chandes again
significantly at x/c = 0.41 and 0.47.

Figure 6 shows the variation of the computed n
values obtained for seven frequencies at the mea-
sured transition location of x/c = 0.47. The max-
imum value of n 1is around 4.8 for a frequency of
approximately 25 kHz. The computed value of n for
transition 4s much lower than the value of n for
this cryogenic wind tunnel T2 of CERT which has a
freestream turbulence level of about 0.2% and a
transition value of n between 7 and 8 based on
experiments performed at ambient flow conditions.

' e 10000 20000 30000 40000

FREQUENCY (Hz)

F1g. 6. vartation of n as a function of frequency
at the transition point x/c = 0.47.

To 1investigate the 1nfluence of wall temper-
ature on the stability calculations, the following
studies were conducted for specified wall temper-
ature distributtons. Figure 7 shows that the
experimental wall temperature s higher than the
adlabatic wall temperature and varies more along
the chord. Since 3 higher wall temperature makes
the boundary layer more unstable, it 1s plausible
to assume that the stability calculations wil}
yield higher values of n than those corresponding
to adtlabatic wal) temperatures.

Figure 8 shows the computed results for the
samx two high and low frequencies studies previ-
ously. The characteristic shape of the curves has

148 I z l
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144
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Fig. 7. Comparison of measured and adiabatic wall
temperature distributions along x/c.
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Fig. 8. Distributions of (a) computed n factors
and (b) the most unstable direction ey of the
disturbances for the experimental wall temperature
distridution in run 42.
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adiabatic and experimental wall temperature

distributions 1n run 42, (a) high frequency case, (b) low frequency case.

not changed and the previously discussed mechanisms
for the adlabatic wall temperature calculations are
st111 valid. However, 1in direct comparison with
the adiabatic case, it can be observed that the
results with high frequency (Fig. 9a) show a
remarkably higher n distribution for x/c greater
than 0.17 for the case of the experimental temper-
ature distribution while the n curves for the lower
frequencies are almost similar (see Fig. 9b). The

distributions for either case (see Fig. 10)
show that the most unstable directions are inde-
pendent of the wall temperature.

Figures 11 to 13 show the results for run 79
at a chord Reynoids number of 13.4 x 105, This
case essentially has the same drag coefficient and
Reynolds number as run 42. For this reason we
assume the location of transition to be at x/c «
0.47.

figure 11 shows the calculated n-factor dis-
tribution for an adiabatic wall temperature dis-
tridbution and Fig. 12 shows the comparison of the
n-factor distributions for adiabatic and experi-
mental wall temperature distributions. As shown
in Fig. 13, the temperature differences between
adlabatic and measured wall temperatures for this
run s weaker than for run 42. As & result, the
distribution of n factors for both cases do not
differ much from each other although, as 1in run

L B L
———s §a30770 H2

— {22308 H2
———r—— {a18462 M2

—— 13539 H2
— 02 M2
—— (A3 M2

00 o0t 02 03 04 08 08 07
x/c

Fig. 1. Distribution of computed n factors for
adiabatic wall conditions in run 79.

42, the measured wall temperatures lead to higher
values of n than those obtained with adladatic wall
conditions. It can also be seen that, while the
value of n at transition location, x/c = 0.47, Is
s)ightly over 7 for calculations performed with a
measured wall temperature distridbution, it 13
around 6.3 for adiabatic wall conditions.
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We note from the above results that near the
leading edge (x/c¢ < 0.10), all the unstable fre-
quencies are of the crossflow type. Further down-
stream, the most unstable direction of the high
frequencies decreases, leading to a more or less
streamwise instability. It is interesting to note
that this streamwise instabiiity 1s very sensitive
to small Mach number variations (hollows) as well
as to the wall temperature. By contrast, the most
unstable direction of the low frequencies remains
close to 90°: they correspond to a crossfiow insta-
biiity which does not "see® the hollows (the evoly-
tion of the n-factor is monotonic). This instabil-
1ty 1s also not sensitive to the wall temperature
variations. This 1s due to the fact that 1t 1s an
*tnflectional® 1instability governed by an inflec-
tion point located near the outer edge of the
boundary layer.

3.3 Calculations with the CSC Method

A detatled description of the stability calcu-
lations for runs 42 and 79 are given in the previ-
ous section for the upper surface of the AS 409

wing. Similar detailed calculations have also been
performed for the same runs, including run 60,
using the CSC method described in subsection 2.2
and will be reported separately. In this subsec-
tion we shall present a summary of the predictions
of the saddle-point method of Cebect and Stewartson
for the same runs, 42 and 79, by showing the dis-
tribution of n factors at several frequencies. We
shall also present and discuss the procedure of
determining the frequencies used in the calculation
of amplification rates, which is different thans any
other method which employs a combination of linear
stability theory and el-method to predict tran-
sition. In fact, the studies conducted with this
method for incompressible flows on wings and bodies
of revolution and recent studies in compressible
flows over modern transport and military wings show
that the calculation of the critical frequencies
is the most important aspect of the transition pre-
diction procedure using stability theory. The
critical frequencies originate in a very narrow
regions and require care and patience to compute
their magnitudes and locations.

The frequencies needed in transition calcula-
tions are computed from zarfs recommended by Cebec!
and Stewartson. They essentially correspond to
neutral stability curves in three-dimensional flows
and have the following properties,

ay = By =0, % = real (15)
In the saddle-point method, for given velocity
profiles obtained with the infinite-swept boundary-
layer method of Cebeci, the stability calculations
begin on the zarf where, with R known and a4, B4
zero, the eigenvalue problem consists of calculat-
ing ap, Br and « with the requirement given by Eq.
(13). With the eigenvalues and disturbance angle
v of the zarf known at a specified x/c-location
and with dimensional frequency specified, the calc-
ulations at the following x/c-station are performed
to obtaln a and p again with the requirement that
3a/38 1s real. This eigenvalue procedure is then
repeated for different values of 3a/3B or y to find
the value of y for which r 1s maximum at each x/c-

station. This process s repeated for each x/c-
station, and n 1s calculated by evaluating the
integral
x
ns- J Tox (16)
*o

Figure 14 shows the arfs for run 42 for an
adiabatic wall and measured wall temperature dis-
tributions. As can be seen, the frequencles orig-
inate at nearly the same location (on a vertical
1ine) and vary drastically one from another. Their
calculation requires care and patience. A paper in
preparation will discuss our procedure for generat-
ing thenm.

Figure 15 shows the computed n factors for the
zarfs of Fig. 14. The results show that for adi-
abatic wall conditions, the maximum value of n for
experimental transition locatton is . ound 6.3; the
corresponding value for the measured wall temper-
ature 1s 7.3. What is more important, however, is
the fact that in the latter case, the computed
transition location agrees very well with the
observed locatton considering that the n-value for
transition in this tunnel lies between 7 and 8.
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figure 16 shows the zarfs for run 79 with wall
conditions corresponding to adiabatic temperature
and Fig. 17 shows a comparison between the zarfs
obtained under adiabatic and measured wall temper-
ature conditions. Again the steep rise in frequen-
cles at almost one x/c-location is noted. The zarf
calculations were performed for a very fine x/c-
grid, since most of the frequencies :htart their
amplification in an interval of 171000t" of chord
around 0.015. Figure 16 also shows zarfs away from
the leading edge. These zarfs have low values of
By around 107¢, occur in an almost zero pressure
gradient region and do not lead to amplification
rates that grow significantly.

Figure 18 shows the computed n factors for run
79 with stability calculations performed for zarfs
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larfs for run 42 for (a) adtabatic and (b) measured wall temperature distributions.
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Computed n-factors for run 42 for (a) adiabatic and (b) measured wall temperature distributions.

in Fig. 17 under adiadbatic and measured wall temp-
erature conditions. For this flow, the n-value 1s
much higher than those in run 42. For an adia-
batic wall, it reaches a maximum value of around 8
and a value of around 9 for the measured wall temp-
erature case. If we take the n value to be 7.5, a
mid-n value of the expected n-value range for this
wind tunnel, then transition occurs at x/c = 0.46
for adlabatic wall conditions and x/c = 0.47 for
measured wall temperature conditions. This com-
pares well with inferred transition locatton of
x/¢c = 0.47.

Figures 19 and 20 show a comparison between the
calculated n-factors obtained with both methods,
with results of CSC corresponding only to the
disturbance that leads to transition. As can bde
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(b)

Comparison between the predictions of CSC (denoted by circles ®) and ONERA/CERT methods for (a)

adladbatic, and (b) measured wall temperature distributions in run 42.

soen, for x/c around 0.45, the calculations with
the CSC method 1indicate higher values of the
n-factor. The calculations with the ONERA/CERY
method correlate the data with n between 6.5 and 7
while those of CSC with n between 7 and 8.

10

4.0 gconcluding Remarks

Based on the studies reported here and in icfs.
9 and 10, the following two comments can be made.
first, rather crude assumptions have been made in
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Comparisons between the predictions of CSC (denoted by circles ®) and ONERA/CERT methods for (a)

abtabatic, and (b) measured wall temperature distributions in run 79.

the computations (infinite swept wing assumption
with a2 mean sweep angle and a mean chord). Second,
i1t 1s possible that cryogenic conditions (tempera-
ture fluctuations) degrade the flow quality. This
could explain the reason why the ONERA/CERT method
calculates n-factors somewhat lower than those com-
puted for ambient temperature with the same stabil-
ity code. For stagnation temperatures lower than
those considered in the paper, ice crystals appear
on the model and trigger transition.
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THE REMARKABLE ABILITY OF TURBULENCE
MODEL EQUATIONS TO DESCRIBE TRANSITION
13-15S JANUARY 1992

David C. Wilcox
DCW Industries, Inc.
La Caiada, California
A mas nser, The purpoe o s pape s o il wpon
This mr demonstrates how well the k-w turbulence Numerical s,-,mmd:; (Dtr:?)ng s i‘n‘” recent Direct
model ibes the nonlinear growth of flow instabilities iate viscous modifications for the Wilcox’ _Q‘PP“O'L

from laminar flow into the turbulent flow regime. Viscous
modifications are for the k-w model that yield
close agreement with measurements and with Direct
Numerical Simulation resuits for channel and pipe flow.
These modifications permit iction of subtle sublayer
details such as maximum dissipation at the surface, k ~ y?
as y = 0, and the sharp value of k near the surface.
With two tnmitiox: specitic closm_e_coegﬁcient_s, the model
equations accurately predict transition for an incompressi-
ble flat-plate boun&rz' ‘!:rer. The analysis also shows why
the k-€ model is so difticult to use for predicting transition.

L Introduction
There has been renewed interest in development of

methods for predicting boundary-layer transition. Current
m)hf, vehicles such as dtge tI:at_ional Acfros%:vce lPl:gm:

, for example, provi e “i,’?““’ or developing

i @mgﬁ : toolsl. achiev: e
hypersonic rarely ¢ momentum-
thickness Reynolds numgee:: enough to sustain fully-
dg;l:ﬁed turbulence, even post-transition region
g y exhibits nontrivial viscous effects. Consequemly,
mneedec}.e low-Reynolds-number turbulence models are also

The standard approach is to view development of a
tnnn:non model and a_low- Ids-number turbulence
model as two separate issues. The strongest argument in
favor of this a is simply that all spectral effects are
lost in the ume-averaging process used by turbulence
models. Tollmien-Schlichting waves, for example, cannot
be distinguished by a ence-model. Since a given
boundary layer is unstable to perturbations that fall in a
specific range of frequencies, conventional turbulence
models, which distinguish only magnitude and an average
frequency, can never be certain if a given perturbation wail
actually cause transition. However, if we implement two
separate models, one for the transition region and another
for the developing turbulent region, aclueving a smooth
joining of the two models’ predictions presents an addition-
al complication.

This complication can be avoided if we view both issues
as mv-keynold;nnmber pmmTenﬁtella can be addressed
in context of a single mode strongest argument
for this is that we can use the same model to
fiow, Including the ransisona) ropion.. This approach

o region. approach is
ible provided we restrict our applications to broad-

The research of Wilcox, et ali+4 ides a great deal of

for the latter approach. Using a k-w? turbulence

| and ic, low-Reynolds-number modi-
fications, Wm -layer transition for a
numbers pressure

surface

e scope of this paper is confined to incompressibie flows.
For incompressible turbulent fluid flow, the complete set

of tions that constitute the Wilcox k
mo&.g}n are as follows. @ two-equation
By,
il )
] 9 F
3O 5 ) = oo lpdi ey @
3 ] ay,
g R = g - sk
9 ok
+ a—‘j[(ﬂ‘*a #r) a_x,-] 3)
@ 9y
E(w) 3 -(Puyw) = af"’ﬁ,' Bow?
9 dw

+ a—xj[(#*'aﬂ-r)-a;'j'] )

B =28, + 1 (5)
2
T = 2u1S;; - 3&6} (6)
br = a*pk/w (7)
1. 0y, 9du
Si=ale F. @)
In Equations (1-8), t is time, x,is position vector, u s

veloaty, p 1s nsity, lsptesme, u)olecuh_r 1 A
and ?,qi's the sum nl:olecuhr and ‘l‘!ls m“m

Also, 6; is the Kronecker delta, k is the turbulence kinetic
:energy. .:d is specific dissipation ;ﬁt'ee. 1;; is Reynoids stress

nsor, Mt is eddy viscosity. six parameters a, a*,
6,3‘.aanda‘mclomreg>effidentswhosevalnesm
given below.

L& Rey/R,
1+ Rer/R,

9

(10)




9 5/18 + (Reg/R,)!

g* = — .

100 1 + (Rer/Rgp*

(11)

8 =3/40, o0* = 0 = 1/2 (12)
a* = 8/3, a, = 1/10 (13)
R, = 8, R, =6, R, =27 (14)
where Req is turbuience Reynolds number defined by

Rer = pk/(wpy) (15)

Section I explains in detail how the turbulence model
simulates tragsition, and justifies the form of the viscous
modifications. Section Il explains why the most Fopuhr
low-Reynolds-number k-¢ models are unsuitable for pre-
dicting transition. Section IV demonstrates how well the
modeF performs for low-Reynolds-number channel flow
and for pipe flow. Section V includes transition predictions
for an incompressible flat-plate boundary layer. Section VI
pre;ems a summary of and conclusions drawn from the
study.

P

Turbulence mode! equations can be used to predict
transition from laminar to turbulent flow, although most
models predict wansition to turbulence at Reynolds num-
bers that are at least an order of magnitude too low. To
understand why and how the k-w model icts transition,
consider the flat-plate boundary layer. For the k-w model,
the incompressible, two-dimensional boundary-layer form
of the equations for k and w is as follows.

du odu 9 du
Yax Ve T a5y ) v
ak ok du: 3 .y 3K
u.5;+va—y = VT(a—y -8 (ﬂk"“a"y'[(v*'a VT)ay]
(17)
dw dw w w2 9 3w
u—a;“"VEy- = a'k-VT(-alyl)'sz+ay[(V+ovT)ay ]
(18)

vi = a*k/w (19)
where u and v are velocity components in the streamwise
(x) and normal (v) directions, respectively, v is kinematic
molecular viscosity. and vy is kinematic eddy viscosity. We
can most clearly illustrate srow the model equations predict
tra;lsliltion by rearranging terms in Equations (17) and (18)
as follows,

ak ok 9 . ak
ox e —_— —_ 20
u = ‘v % Pkﬂ‘mk + 3 [(v+0 vr) 3y ] (20)
d d
u_:.‘."... v.g_;."s Pogu!+3;[(v+v1)5;—o- (21)

The net jon per unit dissipation for the two
equations, Py and P, are defined by:

P = S (22)
X ' w
aa* du/ dy,2
Py= — -
W= 3 5 ) -1 (23)

There are two important observations worthy of mention
at this fomt. First, if the rurbulence energy is zero, Equa-
tion (21) has a well-behaved solution. That is, when k = 0,
the eddy viscosity vanishes and the w equation uncouples
from the k equation. Consequently, the k-w model has a
nontrivial laminar-flow soluton for w. Second, the signs of
Py and P, determine whether k and w are amplified or re-
duced in magnitude. However., it is not obvious by inspec-
tion of Equations (22) and (23) how the signs of these terms
vary with Reynolds number as we move from the plate
leading edie“to points downstream. We can make the
variation obvious by rewriting Equations (22) and (23) in
terms of the Blasius transformation.

Before we introduce the Blasius transformation, we must
determine the appropriate salin%ior w. To do this, we
note that close to the surface of a flat piate boundary layer,
the specific dissipation rate behaves according to”

[N g -37
In terms of the Blasius similarity variable, n, defined by
n = y/(»x/U)* (25)

where U, is freestream velocity, the asymptotic behavior of
w approaching the surface is

6U, 1
W= ——— as

B x w

Consequently, we conciude that the appropriate scaling for
w in the Blasius boundary layer is given by

U.
w = —W(xn)
X

aa y—-»0 (24)

-0 (26)

(27)

where W(x,n) is a dimensionless function to be determined
as part of the solution. Hence, if we write the velocity in
terms of dimensionless velocity, F(x,n), i.c.,

u = U, F(x,n) (28)
the net production per unit dissipation terms become
a* oF/on,:
Py = 3—. Re, (T) -1 (29)
aa* 9F/am
Pu = T Re,, (T) -1 (30)

Thus, both Py and P, increase linearly with Reynolds
number, Re,. From the exact laminar solution for F(n) and
W(n) [the x dependence vanishes for the Blasius bo
layer], the maximum vaiue of the ratio of 3F/dnto W is

given by

oF/a
(—W—l‘)"' - (31)

1
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Hence, as long as the eddy viscosity remains small com-
pared to the molecular viscosity, we can s?:dfy the precise
ints where Py and P, change sign. general, using
Euau‘on (31). we conclude that the sign changes occur at

the following Reynolds numbers.
“
(Re)k = 9104 - (32)
(Re,)), = 910 L (33)
v = aa®

With no viscous modifications, the closure coefficients a,
a®, B and 8°* are 5/9, 1, 3/40 and 9/100, respectively.
These values correspond 1o the limiting form of %&dons
(9-14) as Rey ~ =, Using these fully turbulent values, we
find (Re,)x = 8.100 and (Re,)¢y = 12,150. Thus, starting
from laminar flow at the leading edge of a flat plate, the
following sequence of events occurs.

(1) The computation starts in a laminar region with
k = 0 in the boundary layer and a small freestream
value of k.

(2) Initially, because Py < 0 and P, < 0, dissipation of
both k and w exceeds production. Turbulence
energy is entrained from the freestream and sgreads
through the boundary ll?'er by molecular diffusion.
Neither k nor w is amplified and the boundary layer
remains laminar.

(3) At the critical Reynolds rumber, Rey, = 8,100,
Educu’on catches dissipation in the f‘ equation.
wnstream of x. k production exceeds k dissipa-
tion and turbulence en is amplified. At some
point in this process, the eddy viscosity grows rapidly

and this corresponds to the transition point.

(4) k continues to be amplified and, ond
Re, = 12,150 production caiches dissipation in the w
equation. w is now amplified and continues growing
until a balance between production and dissipation
is achieved in the k equation. When this balance is
achieved. transition from laminar to turbulent flow
is complete.

Consistent with experimental measurements, the entire
is very sensitive to the freestream value of k. There
is also a sensitivity to the freestream value of w, aithough
the sensitivity is more difficult to quantify.

Three key points are immediately obvious. First, k
begins growing at a Reynolds number of 8,100. Bsy;,cdomnst.
linear-stability theory tells us that Tollmien-Schlichting
waves begin forming in the Blasius boundary layer at a
Reynolds number of 90,000. This is known as the mini-
mum critical Reynolds number. Correspondingl Y' we
find that the model predicts transition at much too low a
fnexnolds number. Second. inspection of Equations (32)

(33) shows that the width of the transition region is
controlted by the ratio of 8 10 aa®. Third. transition will
never occur if P, reaches zero eariier than Px. Thus,
occurrence of transition requires

aa® < a*8/8°* as Rer—~0 (34)

This fact must be preserved in any viscous modification
to the model. The viscous modifications in Eauniom 9-
14), i.e., the dependence of a. a® and 8° upon Rey, are de-
signed to accomplish two objectives. The most important

objective is to match the minimum critical Reynolds
number. Reference to Equation (32) shows that we must
require

8*/a* -1 as Rer -0 (35)

A secondary objective is to achieve asymptotic consist-
ency with the exact behavior of k and dissipation.
€ = 8*kw, approaching a solid boundary. That is, we would
like to have

k/y? - constant, €/k - 2v/y? as y -0 (36)

Close 10 a solid boundary, Wilcox? shows that the dissipa-
tion and molecular diffusion terms balance in both the k
and w equations. The very-near-wall solution for w is given
by Equation (24). The solution for k is of the form

k/y" = constant as y = 0 (37
where n is given by

n = Y[l + (1 +248°/8)¥] (38)
Noting that dissipation is related to k and w by

€ = f%w (39)

we can achieve the desired asymptotic behavior of Equa-
tion (36) by requiring

8%/8 = 1/3 as Rer = 0 (40)

Requ.irix:i this limiting behavior as Re; — 0 is sufficient to
achieve the desired asymptotic behavior as y - 0 since the
eddy viscosity, and hence, Re vanish at a solid boundary.

1f we choose to have 8 constant for all values of Rey,
Equations (34), (35) and (40) are sufficient to determine
the limiting values of a* and 8* and an upper bound for
aa* as trbulence Reynolds aumber bagomes vanishingly
small. Specifically, we find

aa* < §
a* - 8/3 as Rer -0 41
g* - 8/3

Wilcox, et al,!# make the eﬂ,uivalent of aa® and a* in
their k-w* models approach the same limiting value and
obtain excellent agreement with measured transition width
for incom‘gressible boundary layers. Numerical exgerimen-
tation with the k-w model indicates the optimum choice for
incompressible boundary layers is aa® - 0.748, or

aa® - 1/18 as Rey = 0 (42)

Equations (9-14) postulate functional dependencies
uron Re; that guarantee the limiting values in Equations
g l)Rand (42), as well as the original fully turbulent values
Or REy = x,

The three coefficients R,, R, and R,, control the rate at
which the closure coefficients approach their fully turbulem
values. As in previous analyses based on the k-w model.”3?
we can determine their values by usin{, perturbation
methods to analyze the viscous sublayer. Using the well
established dure, we can sob-= for the constant in the
law of the wall, B, by soiving the sublayer equations and
evaluating the following limit.

B = lim [u* -~ £ny*] (43)
Yoo K




where u* = u/u, and y* = wy/v are standard sublayer
scaled coordinates. Also, x = 0.41 is Kirman's constant.
For a given value of Ry and R,, there is a unique value of
R, that vields a constant in the law of the wall of 5.0. For
smali values of Rg the peak value of k near the surface is
close to the value achieved without viscous corrections, viz,
u.2/(8*)*. As R, increases, the maximum value of k near
the surface increase: Comparison of computed sublayer
structure with Direct Numerical Simulation (DNS) results
of Mansour, et al'® indicates the optimum choice for these
three coefficients is as indicared in Equation (14). Section
IV presents a complete comparison of computed channel
flow properties with the Mansour, et al DNS results.

The only flaw in the model’s asymptotic consistency
occurs in the Reynolds shear stress, 7,,. While the exact
asymptotic behavior is 7,, ~ y3, the model as formulated
predicts 7, ~ y*. This discrepancy could easily be removed
with another viscous modification. However, results ob-
tained to date indicate this is of no significant consequence.
It has no obvious bearing on either the model’s ability to
g;edicx transition_or properties of interest in turbulent

undary layers. The additional complexity and uncertain-
ty invoived in achieving this subtle feature of the very-near-
wall behavior of 7,, does not appear to be justified.

L Difcties Agendin s f ek

Given the information developed in Section I, it is a
simple matter to explain why little progress has been made
in predicting transition with the k-€ model.!! The primary
difficulties can be easily demonstrated by focusing upon
incompressible boundary layers. If we use the standard
form of the k-¢ model, Equations (17-19) are replaced by

9k 9k du, 2 F] ak
u-a—x-o-v-é; = VT(E; -€+a—y[(V“‘VT/ak)3;] (44)
af a€ ‘ € a 2 62 a af
u; + VE; = C(IE Vr ("a—;l) - C(ZE + a—y[(v"'VT/at)—a?]
(45)
vy = Cuf,k2/ ¢ (46)

Values of the closure coefficients/functions C,. C,,, C,.
f,. o, and o, differ amongst the various versions of this
model. In the absence of viscous modifications. the stand-
ard values usedare C,, = 1.44,C, = 1.92,C, = .09.f, = 1,
o, = land g, = .769.

One critical difference from the k-w model is obvious by
inspection of Equations (44-46). Specifically, if the turbu-
lence energy is zero, € must also be zero. We cannot simply
drop the eddy viscosity in the € equation because of the
presence of k in the denominator of the € equation’s dissi-
pation term. The model does possess a laminar-flow solu-
tion for the ratio of € to k. That is, if we make the formal
change of variables

€ = Ckw 47)

and assume vy < < v, the following laminar-flow equation
for w results.

dw dw ou,2 9w
uaﬁ-v-a? = (C"-l)f"(a—y - (C-1)C,wt +v 3y
2v 3k dw
———— 48
k dydy )

Equation (48) is nearly identical to the limiting form of
Equation (18) for v¢/v — 0. The only significant difference
is the last term on the right-hand side of Equation (48).
Except close to the surface where k must be exactly zero,
this term is unlikely to have a significant effect on the solu-
tion for small nonzero values of k. However, in a numerical
solution, products of dependent-variable gradients are
generally destabilizing, and the problem can only be aggra-
vated by having a coefficient inversely proportional to k.
This is not an insurmoumable probiem. However. estab-
lishing starting conditions is clearly more difficult with the
k-¢ model than with the k-co model.

Given the diverse nature of viscous modifications that
have been proposed for the k-¢ model.!? it is impossible 10
make any universal statements about why a specific model
fails to predict realistic transition Reynolds numbers.
Perhaps the strongest statement that can be made is, no one
has approached the problem from the transition point
of view. Most researchers have sought only to achieve
asymptotc consistency and attempted transition predictions
only as an afterthought. We can gain some insight by
examining the net production per unit dissipation terms for
the k and ¢ equations that are analogous to Equations (29)
and (30), viz,

f, 3F/ am,2
Py = aRe,( W) 1 (49)
Ccl fu oF/on.

On the one hand, without viscous damping, if we
assume Equation (31) is valid, we find (Re,)x = 8,100 and
(Re,)¢ = 10,800. Consequently, like the high-Reynolds-
number version of the k-w model, transition will occur at
too low a Reynolds number.

On the other hand, because f,. C,, and sometimes C,,
are often permitted to be functions of distance from the
surface and/or functions of Rey, we cannot simply use
Equation (31). Furthermore, some modelers add terms to
the k and € eEqauations in addition to damping the closure
coefficients. Each set of values for the closure coefficients
and additional terms must be used in solving Equation (48)
to determine the laminar-flow solution for €/k. While it is
clearly impossible to make a quantitative evaluation of all
variants of the k-¢ model, we can nevertheless make some
general observations.

From the analysis of the k-w model. it is obvious that
havinf f, < 1 will tend to delay transition. Virtually all
modelers implement an f, that will accomplish this end.
However, the modifications of Jones and Launder
Chien.! and Lam and Bremhorst,!* for example. damp C,,
to the extent that (Re, )¢ is smaller than (Re,)x. This is the
o fposiu: of what is needed and will have an undesirable
etfect on both the onset of and the extent of the transition
region.

This discussion is not intended as an exhaustive survey of
the numerous low-Revnolds-number versions of the k-¢
model. Rather. it is intended to illustrate how difficult it is
to apply the model to the transition problem. Given
enough additional closure coefficients and damping func-
tions, the k-¢ model can probably be modified to permit
satisfactory transition predictions.  However, even if this is
done. establishing starting conditions will ultimately require
a solution to Equation (48). That is, to initialize the o:g:gu-
tation, we must effectively transform to the k-w el.
Since this is the natural starting point, it seems illogical to
perform subsequent computations in terms of k and €.




IV. Turbulent Flow Agplicati

To achieve a complete description of the transition from
laminar to turbulent flow, we must be abie to accurat:h\:
describe the flow in the turbulent regime. This is, after
the primary advantage of using turbulence model equations
to describe transition. In this section, we examine channel
and pipe flow to demonstrate how well the low-Reynolds-
{lumger form of the k-w model predicts properties of turbu-
ent flows.

Figures 1 and 2 co ¢ computed chann:l-flow skin
friction, ¢, with the Halleen and Johnston!$ correlation for
Reynolds number based on channel height, H, and average
velocity ranging from 10° to 105. The correlation is

¢, = 0.0706 Rey ™

As shown, computed ¢, differs from the correlation by less
than 3% except at the lowest Reynolds number shown
where the correlation probably is inaccurate. Figure 3
compares computed pipe flow ¢, with Prandtl’s universal
law of friction, viz,

C,'% = 4l°g|o(2 ReD Cf%) - 1.6

(51)

(52)

Reynolds number based on pipe diameter. D, and average
velocity varies from 103 to 10¢. As with channel flow,
computed ¢, falls within 5% of the correlation except at the
lowest Reynolds number indicated where the correlation is
likely to be in error.

For more detailed comparisons, we consider two low-
Reynolds-number channel-flow cases corresponding to the
DNS resuits of Mansour, et al!® and one high-Reynolds-
nux:fbcr pipe flow case corresponding to measurements of
Lauferis,
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Figure 1. Incompressible channel flow with Re, = 180,
Rey = 5.590; o Mansour, et al; » Johnston Formula.

For purposes of identification. the three cases are re-
ferred to in terms of the parameter
Re, = wR/v (53)
where u, is friction velocity and R is either channel half
height or pipe radius. Figures 1 and 2 compare various
computed profiles with the Mansour, et al DNS results for
Re, = 180 and 395, respectively.

Six different comparisons are shown in each figure,
including mean velocity, skin iriction. .devnolds shear
stress, turbulence kinetic energy, turbulence energy produc-
tion and dissipation rate. For both cases. velocity, Revnolds
shear stress, and turbulence kinetic energy profiles differ by
less than 79%. Most notably, for both Reynolds numbers,
the model predicts the ‘gta.{ value of k near the channel
wall to within 4% of the DNS value. Additionally, ap-
proaching the surface, the mrbulence-energ production,
7,,0U/ 9y, and dissipation, €, are within 10% of the DNS
results except very close to the surface.

Figure 3 compares k-w model pipe flow results with
Laufer's®* measurements at a Reynolds pumoer based on
pipe diameter and average velocity of 40.000. As shown.
computed and measured velocity and Revnolds shear stress
profiles differ by less than 8%. As with channel flow,
computed and measured turbulence kinetc energy differ by
about 5% including close to the surface where the sharp
gca.k occurs. Note that, at this high a Revnolds number. the

profile has a sharp spike near é: 0 and this feature is
captured in the computations. cept very close to the
surface, computed turbulence energy production and dissi-
pation differ from measured values by less than 10%. This
may actually be a desirable result. That is, some controver-
sy exists about the accuracy of Laufer’s dissipation meas-
urements close to the surface.
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Figure 2. Incom ible channel flow with Re, = 395,

Rey = 13,750; o Mansour, et al: « Johnston Formula.




-t
[
~
Vn
[~ -]
-
\
>
-]
.0 0.5 1.0
UrUpy P Rep
o 4
- — R T
;
N 3
N (-]
s s l¢ 1
o -
N J
\
2
o -] |
a' o‘ Al m e .
c.0 0.3 1.0 ‘°° ‘0‘ 10
—_u ot /US" Upysv
o ]
- c o
-
pt o
~ (U]
Vn o
Qo o b
el P
AY
» . 3
om°
3 3¢
0.0 2.3 3.0 c.0 $0.0 100.0
kUL Upysv

Figure 3. Incompressible pipe flow with Re, = 1058,
Rey = 40,000; o Laufer; » Prandtl Formula,

V. Transition Anplicati

Figure 4 compares computed and measured transition
Reynolds number. Rey,, for an incompressible flat-plate
boundary layer. We define tne transition Reynolds oumber
as the point where the skin friction achieves its minimum
value. Results are displayed as a function of freestream
turbulence intensity, T, defined by

T = 100 (§%)% (54)

where subscript ¢ denotes the value at the bo ry-layer
edge. As shown, consistent with the data compiled by
Dryden,!” Rey, increases as the freestream intensity de-
creases. Because w can be thought of as an averaged
frequency of the freestream turbulence. it is reasonable to
e:rea the predictions to be sensitive to the freestream
value of w. To assess the effect, the freestrea‘zl value of the
turbulence le&}th scale defined I?' & = k72/w has been
varied from .0016 to .1008 where § is boundary layer thick-
ness. As shown, computed Reg, values bracket virtually all
Erelimizary sfforss f Wiicors i developuny low-Reynoids
prelimi sfforts of Wilcox!8 in developing low-Reynolds-
number modifications for the k-w model.

Figure S compares computed width of the transition
region with measurements of Dhawan and Narasimha.!®
We define transition width, Ax,, as the distance between
minimum and maximum skin-friction points. The comput-
ed width falls within experimental data scatter for
Rey; < 10%, and lies a bit above the data for larger values.
Ax, 1s unaffected by the freestream value of w.
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Figure 4. Comparison of computed and measured variation
of transition Reynolds number with freestream turbulence
intensity; incompressible flat-piate boundary layer.
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Figure 5. Comparison of computed and measured width of
the tramsition region for an incompressible flat-plate

boundary layer.

YL Summary and Conclusions

The primary objective of this paper has been to illustrate
how two-equatica turbulence models, most notably the k-w
model, ict transition. While the long-term goal of this
rese is to develop a transition model for all Mach
numbers, this paper has focused on the case about which we
know the most, viz, incompressible fiow. The low-Reyn-
olds-number modifications pot only facilitate
iosc. sgroement wiih DNS resals for  low-Reynoids
close ment wi ts for low-Re
number channel flow.

Thedegenemzofthec tiog in the k-¢ model is a
major stumbiing that?ﬁm‘:edunmsfulappliuﬁon




to the transition problem. By transforming the model to an
c?mvalem k-w model, it would be possible to remove some
of the difficulties. After making such a transformation
however, there is little reason to transform back.

The applications presented in Sections IV and V indicate
we have tormed a solid foundation for future low-Reyn-
olds-number and transition research.
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A Compressible Near-Wall Turbulence Model for Boundary Layer Calculations
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Abstract Therefore, the postulate is not valid for hypersonic boundary
‘ . L layers, where the Mach number is five or greater, and for flows
A compressible near-wall two-equation model is derived  with strong pressure gradient effects, such as shock-turbulent-
by relaxing the assumption of dynamical field similarity between  boundary-layer interactions. The lanter point was confirmed by

compressible and incompressible flows. This requires
justifications for extending the incompressible models to
compressible flows and the formulation of the turbulent kinetic
energy equation in a form similar to its incompressible
counterpart. As a result, the compressible dissipation function
has to be split into a solenoidal part, which is not sensitive to
changes of compressibility indicators, and a dilatational part,
which is directly affected by these changes. This approach
isolates terms with explicit dependence on compressibility so
that they can be modeled accordingly. An equation that governs
the transport of the solenoidal dissipation rate with additional
terms that are explicitly dependent on compressibility effects is
derived similarly. A model with an explicit dependence on the
turbulent Mach number is proposed for the dilatational
dissipation rate. Thus formalated, all near-wail incompressible
flow models could be expressed in terms of the solenoidal
dissipation rate and straight-forwardly extended to compressible
flows. Therefore, the incompressible equations are recovered
correctly in the limit of constant density. The two-equation
model and the assumption of constant turbulent Prandtl number
are used to calculate compressible boundary layers on a flat plate
with different wall thermal boundary conditions and free-stream
Mach numbers. The calculated results, including the near-wall
distributions of wrbulence statistics and their limiting behavior,
are in good agreement with measurements. In partcular, the
near-wall asymptotic properties are found to be consistent with
incompressible behavior; thus suggesting that turbulent flows in
tl;_cf: viscous sublayer are not much affected by compressibility
effects.

L_Introduction

Density variation in a turbulent flow can come from
different sources. Some of these are: (i) isothermal mixing of
gases of different density, (ii) strong temperature gradient in a
homogeneous fluid, (iii) reactive flows and (iv) compressibility
effects in high speed flows. Each of these sources gives rise to
specific aspects that require modeling if the governing equations
are to be solved. This study makes an attempt to address the last
source; that is, the modeling of high speed compressible
turbulent flows.

Most studies on compressible turbulent flow modeling
[1-9] invoke the Morkovin postulate [10] to justify the direct
extension of the incompressible models to compressible flows.
The postulate was formulated based on early experiments on
compressible boundary layers along adiabatic walls and
compressible wakes, and essentially suggested that the
dynamical field in a compressible flow behaves like an
incompressible onc. This postulate was used by numerous
researchers to assure that compressibility effects can be
accounted for directly by the variable mean density in the
governing equations alone. In other words, the influences of
fluctuating density on turbulence mixing are essentially assumed
to be negligible. The validity and extent of Morkovin's postulate
were reviewed by Bradshaw (2] and he noted that the postulate
is appropriate for flows where density fluctuations are moderate.
Therefore, the postulate is not valid for hypersonic boundary

the studies of Wilcox and Alber [1] and Bradshaw [11] and led
to proposals to have the effects of ilatation correlation
modeled in the govemning equations {12]. A more recent study
where density fluctations are also considered has been given by
Speziale and Sarkar [13]). Besides these modifications, all
turbulent compressible flow modeling rely on incompressible
Two sources of difficulties arise when incompressible
turbulence models are extended to compressible flows. One is
due to compressibility itself and another is associated with the
turbulence phenomena. In i i
equations are coupled and

passive scalar. As a result, all other thermodynamic variables
adopt new roles. Therefore, mathematically, compressible
flows cannot be considered as straightforward extension of
incompressible flows. Furthermore, pressure is only a force
term in incompressible flows and all disturbances propagate at
infinite speed. On the other hand, pressure also supports finite
velocity propagation of disturbances in compressibic flows.
Other complications come from the variable mean density, which
contributes to increased non-lincarity of the governing
equations, and the fluctuating density, which causes the closure
problem to become more difficult.

The second source of difficulties has to do with
wurbulence mixing. Here, even for in ible flows, many
problems remain to be resolved [14-17), especially when the
flow is unsteady and/or three-dimensional [18]. However,
among the many problems associated with wrbulence modeling,
one stands out as most fundamental and urgently needs
antention. This is the treatment of the near-wall flow [17].
Conventional approach is to invoke the wall function
assumptions; thus implying that near-wall turbulence is in local
equilibrium. Even for simple wall shear flows, the assumption
is not quite valid because near-wall wrbulence is not in local
equilibrium. Consequently, a low-Reynolds-number treatment
is necessary in order to obtain resuits that agree with
measurements in the near-wall region (17, 19-21). The need for
near-wall treatment of flows with heat and mass transfer has aiso
beenppmwdout[l?-ZS].'l'hisproblemis to be more
ﬁ gofmthe ible flow modeling ﬁfrltar where the non-

governing equations are
binearity of i g.eq compounded by

mr:mntobjecﬁveiswmodelmmnm‘bk
turbulent flows where the coupling between velocity and

temperature cannot be ignored. As a first attempt, only the
mdc!ingo_fmewbnlaukineticmergymdiudinipaﬁu{m
equations is considered. With the assumption of gradient
mansport, the two-equation model could be used to effect closure
ofthemeanﬂow‘:gmnons. Since the transport equations for
the heat fluxes the temperature dissipation rate are not
modeled and solved, a constant turbulent Prandtl number is
invoked to relate the heat fluxes to the momentum fluxes. In
view of this assumption, the t approach only addresses
the issue of compressibility on turbulent mixing and not
on heat transfer and its interaction with turbulence. An attempt

* Present address: CFD Research Corporation, 3325 Triana Blvd., Huntsville, AL 35805



on this latter probiem will be made after the present model has
been validated.

2..Proposed Modeling Approach

_ With the availability of near-wall models for temperature
variance and its dissipation rate [24], heat fluxes [25],
Reynolds-stresses [26) and the dissipation rate of the turbulens
kinetic energy [27], the time is now ripe for their extension to
compressible flows. In order 10 consider the effects of variable
mean density :lnd itjl fluctuation on turbulence -uixing, it is
necessary to analyse the exact equations and propose appropriate
models to effect closure. Twoegpproaches are availab{,e. Oneis
1o propose totally new models for the terms in the compressible
equations, while another is to attempt to extend the
incompressible models to compressible flows in a credible way.
Both approaches involve assumptions that could or could not be
verified experimentally. Since the present knowledge of
incompressible flow modeling is quite mature, as a first attempt,
it is expedient to extend these models to compressible flows,
This can be accomplished by recasting the compressible
equations in forms similar to their incompressible counterpars
so that terms with explicit dependence on compressibility effects
can be isolated separately, and the incompressible limit can be
recovered in a straight forward and correct manner.

Since the turbulent kinetic energy equation or k-equation
is obtained by contracting the Reynolds-stress equations, this
means that the recasting of the Reynoids-stress equations should
be attempted first. In other words, the viscous diffusion and
dissipation terms in the Reynolds-stress equations have to be
similarly defined as their incompressible counterparts. This
suggests splitting the viscous dissipation function into a

- solenoidal part, which is not sensitive to changes of
compressibility indicators, and a dilatarional part, which is
directly affected by these changes?8. When the Reynolds-stress
equations arc written in this form, three additional terms that
depend explicitly on compressibility effects are present. The k-
equation is then obtained by contracting the Reynolds-stress
equations and its incompressible counterpart is recovered
correctly when density becomes constant and the additional
terms vanish identically. An equation that governs the transport

of the solenoidal dissipation rate (€) of the turbulent kinetic
encrgy (k) is derived and modeled along the line suggested
above. Again, additional terms that depend explicitly on
compressibility effects appear in the equation. This equation
also reduces correctly to its modeled incompressible counterpan
because the additional terms vanish for constant density flows.

All models proposed for the k and € equations are expressed in
terms of this solenoidal dissipation rate. A model with explicit
dependence on the turbulent Mach number proposed by Sarkar
et al. {28] for the dilatational dissipation is adopted. Thus
formulated, the two-equation model is valid for compressible
flows and approaches its incompressible limit in a straight
forward and correct manner.

The systematic approach described above, if proven
successful, could be used to extend incompressible near-wall
models for heat-fluxes, temperature variance and its dissipation
rate to compressible flows. A set of equations governing the
transport of incompressible heat fluxes has been proposed and
validated against simple flows with heat transfer (25], while a
similar set of equations for the temperature variance and its
dissipation rate {24] has also been validated against boundary-
layer flows. This means that near-wall heat transfer models
could also be extended to compressible flows using the approach
proposed above. However, before this extension is undertaken,
the asymptotic consistency of these models has to be verified.
Until such time, the assumption of a constant turbulent Prandil
number for near-wall compressible flow is inevitable.

In the following, the compressible equations are first

derived, then the near-wall modeling of the k and € equations are
discussed. In section 6, the two-equation model is used to
calculate compressible layers on a flat plate assuming a
constant turbulent Prandil number. Comparisons with
measurements [9, 29-31) and other calculations, such as those
obtained using the k- model of Wilcox (8], are carried out to
assess the importance of density fluctuations on the calculated
results and, hence, the validity and extent of Morkovin's

hypothesis.
3._Mean Flow Equations
_The compressible mean flow equations are obtained by
applying Favre averaging to the instantancous Navier-Stokes
equations which for Newtonian fluids can be written as:
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u; is the i*® component of the velocity vector, x; is the ith
component of the coordinates and p, T, p, W, Kk, Cp are
pressure, temperature, density, viscosity, thermal conductivity
and specific heat at constant pressure, respectively. Favre
decomposition is applied to all variables except p and p where
coolmennonal Reynolds decomposition is assumed. In other
words

ui=(Ui)+ui' ’ 5)
T=(8)+6" , (5]
p=F+p’ . N
p=p+p . @)

where u. and 6” are the Favre fluctuations and p’ and p’ are the
Reynolds fluctuations. If <> is used to denote Favre-averaged
quantities and the overbar the Reynolds-averaged quantities,
then the mean equations for compressible flows can be obtained
as follows. The above decompositions (5)-(8) are substituted
into (1)-(4) and the resultant equations are averaged over time.
If the wurbulent flow is further assumed to be stationary and the
mean momentum equa;iqn and the Reynolds-stress and wrbulent
kinetic energy, k = -(i U u. ), equations to be derived later are used

to simplify the energy equation, the turbulent mean flow
equations become
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In these equations, L =11, X = ¥ _and C, = C; have been
substituted and the mean and fluctuating stresses are given by
d
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(H). Thus wrmen. (3)-(11) reduce to their incompressible
counterparts exactly when density becomes constant.

An order-of-magnitude analysis is carried out on (9) -
(11). The result shows that the underlined terms are of smaller
order and, as a first approximation, could be neglected compared
to the terms retained. Thus formulated, the compressible
equations are identical to the incompressible equations and the
additional unknowns are the turbulent momentum and heat
fluxes, just as in the incompressible case. The present approach
proposes to close these equations assuming gradient transport.
As a first attempt, a near-wall two-equation k-€ model is used to
determine the wrbulent viscosity and a constant turbulent Prandd
number is invoked to relate turbulent momentum and heat
fluxes. Therefore, the present model cannot fully account for
the effects of density fluctuation on turbulent heat transfer.

4. Modeling of the Turbulent Kinetic E Equaii

The Favre-averaged transport equation for the Reynolds
stresses F(ui'uj') could be similarly derived as in the

incompressible case (16]. That is, the ith fluctuating velocity
equation is obtained by subtracting the mean momentum
equation from the instantancous equation. Repeat the same

to obwin the jth fluctuating velocity equation. The ith
fluctuating velocity .:guanon is then multiplied by the jth
fluctuation velocity vice versa and the two equations are
added together and averaged over time. Omitting all the algebra,
the final exact equation is:
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Symbolically, the above equation can be written as

Cij= Di} +D%-PE, + O + P + G + Ty (13)

With the exception of G;; and Tj;, (13) is similar to its
ucompressible coun ﬂﬁ] For an inco ible flow,
u, =0, and Gj; = Tj; = 0. Even under this condition, (13) fails
to reduce pmpeﬂy i the incompressible equation given in Ref.

The son lies in the grouping of the terms
pe,] +®;j} In order 1 achieve this incompressible limit

correctly, a xe-mngmg of the terms in (D - pe,‘ +q>,,) xs

necessary. If viscous diffusion and
flows are lgnn defined similarly to their moompressxble
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Note that (16) reduces to its incompressibie counterpart exactly
when constant fluid pmpuues are assumed. For compressible
flows, an extra term P€; in (16)._In addition, three
terms are fi m The term Pe;; is a dilatational
term and could be mmprewd’ls compressible or dilatational
dissipation. This term is only important for compressible flows.

ltshouldbepomtedouuhatdb is given by (17b) and, as
a result of this particular pmmonu{ , there are several extra
terms resulted from compressibility and variable viscosity.
However, at high Reynolds number, dimensional ngumems
reveal that these extra contributions are n
pressure diffusion is further neglected, then Dj;, p'e;; and
would assume the same form as their moomﬂtessnblé
counterparts.  Therefore, the high-Reynolds-number
bie models for these terms [16, 32] could
be straight-forwardly extended to compressible flows.

However.amodelfadleeomprmbledxsnpmontumpe“ls




required to complete closure. For high-Reynolds-numoer
flows, this compressible dissipation could be assumed to be
isotropic. As a result, the following model is proposed:

E?.gz.s..ec
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where ¢ 3o

The modeling of €° has been attempted by Sarkar et al.
[28). They are the first to realize that the contribution of the
dilatational dissipation term is important for supersonic shear
flows. A simple algebraic model, which is based on an
asymptotic analysis and a direct numerical simulation of the
simplified governing equations, has been proposed for €°, Their
proposal could be modified to become

€=Mk , (19)

T\2
- _‘au.’
where o isamodelconstant.M,z=2k/Fz.PE=u a_x: is the

dissipation of k and T is the local mean speed of sound.
Therefore, M, is the local turbulent Mach number. It should be
pointed out that Sarkar et al.'s [28] definition of €€ is four times
larger than the definition given in (19) as a result of a different
splitting of the terms in (16). Consequently, &; should take on
a value equal to 1/4 of that suggested in Ref. 28. Based on an
anaiysis of decay of ible isotropic mrbulence, Sarkar et
al. [28] suggested a value of one for their constant. In other
words, a; = 0.25. If a, is evaluated based on compressible
shear flows, its value would be 0.15. The present study adopts

a; = 0.15 for the analyses of boundary-layer flows.

The k-equation is obtained by contracting (12) and
making use of (16) and (18) to simplify the resulting equation
which can be written as:
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It can be scen that the terms, DI, @ ;; and Pej;, and the
coefficient, u., appearing in G;; and Tj; require modeling.
Furthermore, When p is assumed to be constant and u, = 0, the
last three terms in (20) are identically zero and the
imf'ompressible equation is recovered exactly. The modeling of
D,. ®;; and Pg;; could be accomplished by drawing parallels
with their incompressible counterpans [26, 27). However, this
requires knowledge of their behavior in the near-wall region.

The near-wall behavior of (20) can be analysed by
assuming Taylor series expansions about the wall for the
fluctuating quantities. This analysis is similar to the
incompressible case [26) except that expansions also have to be
assumed for p' and @ . The proposed expansions are:

u"saly+82y2+....
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It should be cautioned that, although the velocity and
temperature expansions are physically correct, the expansion for
density is an assumption. As pointed out by Bradshaw [11], the
fluctuating temperature and density could not go to zero
simultaneously at the wall. Otherwise, it would lead to a zero
wall p’. In general, tem fluctuation is assumed to be
zero at the wall, while p” is not. Here, the assumption is made
that p’ also goes to zero at the wall, however, its value away
from the wall is finite. Since p’ is taken to be essentially zero
over the whole field in Morkovin's hypothesis [10], the present
approach could be viewed as a partial relaxation of that
assumption. Consequently, :he proposed model would not be
valid for all free-stream Mach number and wall thermal
boundary conditions. Therefore, one of the present objective is
to analyse the validity and extent of the proposed two-cquation

For incompressible flows, by = 0 is obtained by imposing
the incompressibility condition and becomes a crucial condition
in near-wall analysis. This important condition holds the key to
the present extension of the near-wall incompressible models to
compressible flows. In order to show that b; indeed vanishes

under these conditions, the continuity equation for p’ is first
derived, or

a ! — ’ ’ d
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Expansions (21) are then substituted into the above equation. If

(Up) =0 at the wall is used, it can be easily verified that, under
the assumption of (21), by = 0 is still a valid condition for
compressible flows, irrespective of the thermal boundary

condition. Therefore, the assumed p” expansion facilitates the
modeling of compressible flows, because all terms in (20) have
similar forms as their incompressible counterparts except the

extra &5; term which needs to be analyzed.

Using definition (18) for €, it is easily verified that € is
of order y*. The high-Reynolds-number model (19) also has
similar behavior near a wall. Therefore, it is proposed to extend
(19) to near-wall flow without modification, while the near-wall
balance provided by thg exact €5; is taken into consideration by
combining it with the &; term. As for p €, it could be modeled
by following the arguments presented in Refs. 26 and 27 for
incompressible flows. In essence, Refs. 26 and 27 argue that
the incompressible &;; can be set equal to 2¢ and the near-wall
corrections proposed for g;; have little or no effects on the
behavior of g; in the region near a wall. This means that g;; can
be approximated by 2¢ in the whole field. In view of this, the
model for P e;; can be assumed to be given by 2pe. Based on
this model, equation (15) and expansions (21), it can be easily
shown that the leading term of € in the near-wall region is a
constant equal to its wall value €,,. Again, the behavior is
similar to its incompressible counterpart.

Near-wall analysis again shows that turbulent diffusion is a
higher order term and its high-Reynolds-number model could be
adopted because it does not affect near-wall balance of the k-
equation. Consistent with the assumption of gradient
for two-equation models, the incompressible model for turbuleq}
diffusion of k is extended to compressible flows by writing D,
= 9((} /0 )ok/0x;)/0x;, where O is a constant and |, is the
turbulent viscosity defined by ity = C,f,p k2/e. In this
definition, C, is a model constant while f,, is a damping function
to be defined later. Based on (21), the leading order term of k in
the near-wall region is y2. Since € = &,, in this region, k2/¢ has
1o be of order y*. If the shear stress is defined with respect to
;. then it can be shown that the leading order term of the shear
stress has to be of order y3 in the near-wall region. Therefore, it
follows that V, = [T /p is also of order y3 near a wall and this,




in tum, leads to a similar behavior for the modeled DY term in
the near-wall region. This q:havior is consistent with the
behavior of the exact term D, ¢ appearing in (20). In other
(\;%r)d& the modeled D, does nét affect the near-wall balance of

According to (18), €f; = 2€%. As such, the near-wall
behavior of the exact €; is not properly accounted for by the
proposed model. In the above discussion, it is argued that the
near-wgll behavior of €;; could be modeled together with the
term @;;. In ordcr to analyse the near-wall behavior of the

combined term (d>,, + P€5), the behavior of G;; and Tj; nez." a
wall has to be studied. The appearance of mean pressure in Gj;
makes the analysis slightly more difficult. However, the
difficulty could be circumvented by making use of the mean
momentum equation (10). The ﬁnal analysis shows that the
combined (G;; + Tj;) term has the following near-wall behavior;
namely,

Gyy + Tiy1 = O(y?): Gy3 + T33 > O
Gp+Tn-0y) . 23)

This means that, to the lowest order, the near-wall behavior of
(®;; + PE) is similar to its incompregsible counterpart [26).
For incompressible flows, the term, ®;;, can be written into a
pressure diffusion part and a pressure redistribution part.
Pressure redistributon is identically zero and since pressure
diffusion is relatively small, it is usually neglecied. Such is not
the case for compressible flows. The term, ®;;, can again be
partition into a pressure diffusion part, which could be
neglected, and a term involving pressure-velocity-gradient
correlation. This lanter term does not vanish because fluid
volume changes as a result of density variation. Therefom,
argument could be made to model the term, (0" + P& to
account for dilatational effects only. In view of this, the
following model is proposed, or

@+ PE) = -vYpk (a—gux—)) , 24

where v is a model constant.

The proposed models still fail to close the k-equation
because of the presence of u: in T;; and G;;. Therefore, it is

necessary to shed some light on the modeling of u;, which is

identically zero for incompressible flows. Using Favre
averaging, it can be shown that -p’ui. = 6‘1:_ In other words,
u: =. p’u: fp. Previous proposals for -p'u: are based on the
gradient transport assumption; namely,
— 7
pu =L SE (25)
where O, is 2 model constant. However, a more claborate way
model the term is to adopt the proposal,
: EL Cp -k. (u. % ap
p (26)

wherc Cr is a model constant. Alternatively, the term can also
modeled by

H @

where B equals to unity for an ideal gas.

The near-wall behavior of the modeled k-equation can
now be analysed using expansions (21). It can be easily shown
that in the region very near a wall, the modeled k-equation is in
balance up to order y. Consequently, it does not need further
modifications to achieve a consistent asymptotic behavior near a
wall.

s. Modelling of the Dissipation-Rare Equai

The exact transport equation for the solenoidal dissipation
rate (p €) can be derived as in the Reynolds-stress equation (12).
It has been pointed out that the e-equation is the most difficult to
model even for incompressible flows (13, 16, 17, 26, 27, 32].
The reason being that many of the terms in the exact equation are
cither not known or could not be measured accurately at present.
Consequently, the incompressible e-equation is modeled in an ad
hoc manner to resemble the k-equation in form so that the right
hand side of the e-equation again consists of four terms; namely,
viscous diffusion, turbulent diffusion, production and
destruction of €. The equation is further modified for near-wall
flows by adding an extra destruction term § so that the modeled
equation remains balance as a wall is approached. There is a
lack of measurements in compressible flows, therefore, a
rigorous modeling of the compressible e-equation is not possible
at present. An altemnative is to extend the high-Reynolds-
number incompressible models to compressible flows and then
seck a near-wall correction to the modeled e-equation along the
line suggested in Ref. 27. In view of this, the exact transport
equation for the dissipation rate is not in a convenient form to
work with. The proposal of Speziale and Sarkar {13] with the
dilatational effects explicitly written out will be more

appropriate.
Following Speziale and Sarkar {13}, the modeled

transport equation for € with near-wall correction is written in
the simplified form; namely

Dpe _ 3 [-2e )
H—|+D+Pc- A, - ip , 28
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where D}, is the turbulent transport of €, P, is the production of €
due to deviatoric strains, A, is the destructon of € and £ is a
near-wall correction for compressible flows. The second last
term on the right hand side of (28) is exact and results from the
writing of the exact e-equation into the form of (28). When the
dissipation-rate equation is formulated in this form, it is
reducible exactly to its incompressible counterpart and,
therefore.thetermsD P, and canbemodeledbyavamble
density extension of tﬁcn mcomp:esslble models. Followin ‘g
suggestions of Refs. 13 and 27, the models proposed for D,
and A, are:
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where the mode! constants C,y and C,2 are the same as those
given in Ref. 27 for incompressible flows ande =¢ - €,,. It
should be noted that the mean dilatational effects are accounted
for exactly by (29b) for compressible flows and that these
models reduce exactly to their incompressible counterparts when
the flow Mach number becomes very small. In addition, the
ordering of these model terms is similar to their incompressible
counterparts. Therefore, the near-wall function § can be
determined in a manner similar to that proposed in Ref. 27.

The incompressit ‘e form of (28) with model terms given
in (29) is identical to that proposed in Refs. 26 and 27. In these
studies, the coincidence condition suggested by Shima [21] was
used to determine €. This is equivalent to requiring the
g-equation to achieve balance behavior in the near-wall region at
least up to order y. The approach used to deduce ¢ is to
assumed a functional form for & with two undetermined model
constants. One of the constant can be determined from near-wall
analysis, while the other is evaluated using computer
optimization. The § function thus determined has been used in
Ref. 27 to calculate flat plate boundary-layer flows and in Ref.
26 to calculate fully-developed channel and pipe flows. These
calculations were carried out over a wide range of flow
Reynolds number. The results were compared with direct
simulation data as well as measurements. Very good agreement
has been found for both the limiting behavior of the turbulence
quantities and € when compared to direct simulation data [33-
35]. Funhermore, the two-equation model calculations of Ref.
27 are found to give better results than those obtained by
Speziale et al. [36]. In view of this success, the same approach
can be used to determine § for compressible flows.

The functional form assumed in Ref. 27 is adopted here,

-] €€ €2
§=fW.2p['Nr+M_k-]’ (30)

where f,,  is a damping function that goes to one at the wall and
zero far away from the wall. It is defined in Ref. 27 as f,, o =
¢"(RU642 where R, = k?/Ve is the turbulent Reynolds mxméer.
The function €” is defined as €” = € - 2Vk/y2 by generalizing the
incompressible definition used in Ref. 27. Similarly, € is
defined with €, given by g, = 2v(Wk/dx;),. Once § is
postulated, the near-wall behavior of (28) and the modeled terms
of (29) can be analysed using expansions (21). If the modeled
equation is again required to be in balance up to order y, then it
can be easily shown that N = 2 - C,9 because the mean
dilatational terms are of order y. Therefore, to order y° they do
not contribute to §. In Ref. 27, the part involving Cj in N is
grouped together with M to give M) = (Ceoe£/e*2 + M) and its
value is determined through computer optimization studies.
Again, the same procedure is followed in the present study to
determine M,.

Finally, to complete closure of the governing equations,
gradient wansport is assumed for the Reynolds stresses and the
relation is given by

P . A wm) -
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In addition, a constant turbulent Prandtl number is assumed so
that heat and momentum diffusivity can be related by Pr, = vﬁ
), where @, is the turbulent thermal diffusivity. The damping
function f,, appearing in the definition of | can now be defined.
In view of the similarity of the present k and € equations with
those for incompressible flows, the fy, used in Ref. 27 is
adopted here. It is defined as

fu=(1 + 3454 mnh (y*/115) 32)

where y* = yu/V is the wall coordinate and u(x) is the friction
velocity. In this definition, y is taken to be the normal
coordinate and x the stream coordinate.

6 Model Validasi

A first step to validate the two-equation model for
compressible flows is to apply it to calculate flat plate boundary-
layer flows with different wall boundary conditions and free-
stream Mach numbers. In this initial attempt, heat flux is not
modeled separately. Instead, it is related to momentum flux via
the assumfption of a constant turbulent Prandtl number. The
rationale for doing this is to carefully assess the assumption
made in (21) conceming the expansion for p', whose validity
affects the near-wall analysis used to justify the direct extension
of the incompressible near-wall function § to compressible
flows. By choosing the simplest type of compressible flows to
validate the model, a careful analysis of the validity and extent of
the expansion for p' can be carried out. A second objective of
this validation is to determine, if possible, the validity and extent
of Morkovin's hypothesis. In other words, it is hoped to
evaluate the Mach number range and the type of wall thermal
boundary conditions in which the effects of fluctuating density
can be negiected in the modeling of the governing equations.
Therefore, the experimental data chosen for comparisons are
selected from three different groups; one with adiabatic wall
boundary condition and varying free-stream Mach number,
another with constant wall temperature and varying free-stream
Mach number, and finally the variations of skin friction with
free-stream Mach number and wall temperature as prescribed by
the van Driest II formulae given in Ref. 9. The data for the first
two groups are selected from Ref. 31. Only one case with
constant wall is selected. The reasons being that the
other cases reported in Ref. 31 are either not accurate as far as
the measured skin friction is concemned or the measured mean
velocity and temperature are doubtful. In the following, the
governing equations for compressible flat plate boundary-layer
flows are first presented. Then the calculatons and comparisons
with data are examined and the validity of the two-equation
model is studied in detail. Finally, the model performance and
its proposed improvement are discussed.

Two-dimensional, steady compressible boundary layers
on a flat plate are considered. If the usual boundary-layer
approximations are made, then equatons (9) - (11), (20) and
(28) can be substantially simplified. For the sake of
completeness, the boundary-layer equations in Cartesian x-y
coordinates are listed here as:

xFO)+2FV =0, 33)
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In writing down these equations, (33) has been used to relate the
shear stress to the mean velocity gradient. It is also noted that
G;; is zero for flat plate boundary-layer_flows while the only
term of importance in Tj; is that given by u”. If (25) is used to
evaluate u”, then Tj; is of order y2 and is not important in the
near-wall region, which according to So et al. [27] is bounded
by 0 € y* £5. The model constants are taken from Refs. 27
and 32 and are given by: C,, = 0.096, C,q = 1.5, C¢3 = 1.83,
oy = 0.75, 0, = 1.45, @; = 0.15,0, = 0.5and Y= 0.182. The
turbulent Prandtl number Pry is specified as 0.9, while Pr is
assumed constant and taken to be 0.74. Sutherland and power
laws are used to evaluate fluid viscosity at an appropriate
reference wre. The constants o, and a; are d i

by calibrating the calculated resuits against some classic
experiments such as those provided in Refs. 29 and 30. Once
determined, they are kept constant for all other calculations. In
fact, the cases to be compared in the next section are different
from the cases used to calibrate 0, and ;. As for N and M;,
the final choice of values adopted are 2 and 1.5, respectively,
just as in Ref. 27.

The boundary conditions are no slip at the wall for mean
velocities and k, and zero heat flux or constant wall temperature
at the wall for enthalpy. As for €, its value at the wall is given
by 2v (Vk/3y). At the edge of the boundary layer, free-stream
conditions arc' specified for both mean stream velocity and
enthalpy. In principle, k and £ should be zero in the free stream.
However, in pracuce, they are assumed to take on some very
small values, of the order of 107, in the free stream. Thus
formulated, the above equations and the appropriate boundary
conditions can be solved numerically usiuyg the boundary-layer
code developed by Anderson and Lewis (30] and modified by
So et al. [27].

All measurements used to validate the near-wall two-
equation model are drawn from Ref. 31. The calculations are
carried out over the range, 0 < M_, < 10, for adiabatic wall
boundary condition and over the range, 0 < 8,/0, < 1, for
constant wall temperature condition. Here, 8, is the wall
temperature and 6, is the recovery temperature for adiabatic wall
boundary condition and is the adiabatic wall temperature for
constant wall . It should be pointed out that 8,,/8, =
1.0 corresponds to adiabatic wall boundary condition while
©,/0, < 1 indicates that the wall is cooled. Since only mean
flow properties are available from Ref. 31, comparisons are
made with these measurements and another set of calculations
using the k-w model of Wilcox {8]. All comparisons are made at
the same momentum thickness Reynolds number (Ry) as the
measurements. Four sets of data are chosen and these are cases
55010504, 53011302 and 73050504 with adiabatic wall
boundary condition and case 59020105 with constant wall

temperature. The free-stream Mach number (M) for these
cases are 2.244, 4.544, 10.31 and 5.29, respectively, while the

corresponding Rgy's are 20,797, 5,532, 15,074 and 3,939.
Therefore, the data cover a wide range of R, and M,,. The
variations of skin friction with M_, and 6,/6, are compared

with the van Driest II formulae reported for a fixed Ry as
specified in Ref. 9. Finally, an assessment of compressibility
effects on near-wall flows is antempted by comparing the
calculated turbulence statistics for the different cases

investigated.

The results are organized in the following manner for
presentation. Mean stream velocities are normalized by u. to
give u* and they are plotted versus In y3, (Fig. 1), where y§, is
defined as ucy/V,,. A direct plot of the mean velocities is aiso
given in Fig. 2 where <U>/U,, versus y/ is shown. Here, § is
the boundary layer thickness defined as the location of y in
which <U>/U,, = 1.0 as specified by the measurements and U,,
is the free-stream velocity. On the other hand, mean
temperatures are nomalized by 6,,, the free-stream temperature,
and age shown versus  y/0 (l'~"1_g._3)2 Plots.far the properties, k*
= kfuy, €* = eV, -uv* = -uvArr and -8v* = -8v/U..8,,, are
presented intexms of y3, and y/5. Near-wall behavior of k*, €*,
-uv* and -@v* (Figs. 4 - 7) are discussed first, then the
distributions of k* and -uv* in the outer region are examined
(Figs. 8 and 9). In Figs 8 and 9, § is not interpreted from
measurements; rather it is evaluated at the y location where
<U>/U,, = 0.9974. Only the budget of k in the near-wall region
for case 73050504 (M., = 10.31 and 8,,/6; = 1.0) is presented
(Fig. 10) because the k budgets for the other cases are
essentially similar to that shown in Fig. 10. The effects of Mach
number on the asymptotic behavior of k are examined by
plotting a, versus M,, (Fig. 11), where ay is the leading
cocfficient in the expansion of k* in terms of y,,. According to
Ref. 27, €, = 2a,. Therefore, by examining a, versus M,., the
variation of €}, with Mach number is also evident. Other

asymptotic properties are tabulated in Table 1 for c ansqil
The variations of skin friction coefficient, Cr= :3% U

with M,, and 6,,/6; are compared with van Dniest II resulis (9]
in Fig. 12. Finally, the mean vel lots in terms of the
compressible u* defined as u! = ( J(P/Py)d<U>)/u, for two
different M,, are shown in Fig. 139 This figure is provided to
illustrate the deviation or lack thereof from the van Driest law of
the wall for compressible flows {37, 38].

Two versions of the present k-e model are used to
calculate boundary-layer flows. One designated k- model/1
solves the k and € transpor equations as given in (38) and (39).
The second designated k-& model/2 solves (38) and (39) with all
additional compressible terms neglected and the dk/dy term
omitted in (37). In other words, the two-equation model for k-€
model/2 is a dmrect variable ity extension of the two-equation
incompressible model of Ref. 27. These calculations can be
used to evaluate the validity and extent of Morkovin's
hypothesis and the importance of having an asymptotically
consistent near-wall correction for two-equation models.

Four sets of u* results are shown in Fig. 1. In the figure
the calculated and measured C; and the C; determined from the
van Driest II formula of Ref. 9 are listed for comparison. The
log-law shown is used to demonstrate the existence of a log
region in the calculated and measured flows, while the von
Karman constant x is taken to be 0.41. It is recognized that the
intercept is a function of Mach number; however, in this figure,
the intercept is taken to be 4.7. The actual value used is not
important because the here is to illustrate the siope of
the log-law. It can be seen that a log region indeed exists for all
calculated and measured flows. The slope is fairly constant for
the three adiabatic wall cases tested and the x thus determined is
approximately 0.41. _For the cooled wall case, the k-€ mode!
predicted slopes are slightly different from that calculated by k-o
model. None of these slopes yields a von Karman constant of
0.41 though. Cqis predicted correctly by all three models with a
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maximum error of less than 5%. For the cooled wall case, the
measured Cy is substantially higher than the van Driest I value
and, according to Ref. 31, is not as accurate as the measured
for the other cases studied. The model calculations are in g
agreement with the van Driest II values for all cases examined.

Calculated u* profiles correlate well with measurements.
At high Mach numbers, there seems to be substantial difference
between model predictions and measurements in the outer region
of the boundary layer. Such a difference is also noted when the
plots are given in terms of <U>/U,, versus y/d in Fig. 2. From
these plots, it can be seen that k-e model predictions of <U>/U,,
are in better agreement with data than k-w calculations (Fig. 2).
The agreement between k-€ model predictions and measurements
is good up to M, = 10.31. On the other hand, the discrepancy
between calculations and measurements deteriorates as M,
increases for the k-@ model. Therefore, the proposed k-€
models represent improvements over existing models whose
predictions are correct only for M,, < 5 (sce e.g. Ref. 39).
Since most existing models do not have an asymptotically
consistent near-wall correction and are direct extensions of their
incompressible counterparts, the discrepancies display by these

models for M, > 5 are understandable. Present results show
that, if the near-wall flow is modeled in an asymptotically correct
and consistent manner, the incompressible models can be
straight-forwardly extended to compressible flows with a free-
stream Mach number as high as 10. It should be pointed out that
the k-w model is not an asymptotically consistent near-wall
model. Therefore, its prediction of <U>/U.,, in paticular that
for the cooled wall case, is not as good as k-e model
calculations. One reason could be the fairly low Rﬁ (3,939) for
this case. Since the results of k- model/2 are also in good
agreement with measurements (Figs. 1 and 2), the comparisons
suggest that the additional compressible terms in (38) and (39)
are not too important. However, an examination of the mean
temperature results tends not to support this conclusion (Fig. 3).

The mean temperature profile comparisons are shown in
Fig. 3. Predictions by the k-® model show substantial
discrepancies compared to the k-¢ model calculations and
measurements; particularly for the cooled wall case (Fig. 2a).
Discrepancies between measurements and k- predictions
increase as M,, increases and as 6,,/8, decreases. On the other
hand, the agreement between k-€ model/1 predictions and data
improves as M,, increases for adiabatic wall boundary condition.
This is not true for k-€ model/2 where the disagreement with
data is quite substantial at M,, = 10.31 (Fig. 2b). The
predictions of the cooled wall case (Fig. 2a) tell a different story.
It seems that k-€ model/2 gives as good a prediction of the
cooled wall case as that of k-e model/1 (Figs. 1a and 2a). The
following three reasons could be put forward to explain this
behavior. Firstly, the p' expansion may not be totally valid for
constant wall temperature boundary condition. Secondly, the
proposed compressible models may be more applicable for
adiabatic wall boundary condition. Thirdly, the assumption of a
constant turbulent Prandtl number may not be appropriate.

The near-wall distributions of k* for the four cases are
shown in Fig. 4. Only the predictions of k-€ model/1 and k-w
model are compared. The calculations of k-€ model/2 are_not
shown: instead, the limiting behavior of k*, -uv* and -@v* is
tabulated in Table 1 for comparison. In general, the predictions
of k- model are substantially lowered than those of k-€
model/1. The peaks are about 40% lower than those predicted
by k-g model/1 and the locations where the peaks occur are
calculated to be further away from the wall than k- model/]
predictions. According to k-e modeV/1, the peak of k* decreases
as M., increases. The decrease is more than 20% over a Mach
number range of 10. On the other hand, a slight cooling of the
wall at M,, = 5.29 causes the peak of k* to decrease to the same
level as that for the case of adiabatic wall with M,, = 10.31.
These results suggest that wall cooling has more influence on
reducing mrbulent mixing compared to compressibility effects.
Overall, compressibility reduces turbulent mixing and the

reduction increases with M,,. The near-wall distributions of £*
as calculated by k-& model/] are plotted in Fig. 5. It can be seen
that the distributions are very similar to those shown in Ref. 27
for incompressible flows. The variations of €, with M., and
©,,/6, are very similar to those of k*. Again, maximum e*
occurs at the wall and a plateau in €* is found in the range, 7 S
Yu S 13. This means that compressibility has litte or no effects
on the near-wall behavior of €*. The exception is that increases
in compressibility and wall cooling tend to decrease €},.

__In general, k- model gives a very accurate prediction of
-uv * near a wall. Its predictions are as good as those given by
k-e model/1 (Fig. 6). From this set of predictions, the following
observations can be made. Firstly, the peak of -uv* decreases
with increasiné M., and decreasing ©,,/8,. Sccondly, as M,
increases and ©,,/8, decreases, the location of the peak moves
towards the wall. Thirdly, the rate of decrease of -uv* in the
range, 30 S yy, < 100, increases as M.. increases. Finally, the
asymptotic near-wall behavior of -uv* is listed in Table Lfar
comparison. Much the same behavior is also true for -Ov*
whose distributions in the near-wall region are shown in Fig. 7.

If the distributions of 8v* are plotted instead ofi_v*. the curves
will have the same shape as those shown for -uv:_Therefore,
the observations drawn for -uv* are aiso valid for Ov*.

The distributions of k* and -uv* across the boundary
layer are compared in Figs. 8 and 9, respectively. In all cases
shown, k- model over-predicts k+ and -uv* in the outer part of
the boundary layer compared to the calculations of k- model/1.
The over-prediction extends across the range, 0.2 < y/6 £ 1.0.
Reduction of turbulence activities in the outer part of the
boundary layer is clearly evident when either compressibility or
wall cooling effects are present. The reduction increases as M,,
increases and ©,/0, decreases. Therefore, it is expected that
turbulence activities will be substantially reduced in a flow
where the free-stream Mach number is large and the wall is
highly cooled.

The near-wall k budget for case 73050504 is plotted in
Fig. 10. Other budget plots are not shown because they are
essentially similar to that given in Fig. 10. It can be seen that the
k budget bears a lot of similariry with that calculated for
incompressible flows (see e.g. Ref. 27). The additional
compressible terms have negligible effect on the near-wall k
budget. Therefore, the assumptons made to derive the near-
wall function § in the dissipation-rate equation are justified.
Again, viscous diffusion balances dissipation at the wall. This
balance extends to about y,, = 4 where turbulent diffusion and
production become important. In the region, 4 < y;, S 15,
viscous and turbulent diffusion, production and dissipation are
equally important. Beyond y, = 15, production and dissipation
are in balance, just as in the case of incompressible flows.
Consequently, the near-wall k behavior is very similar for both
incompressible and compressible flows.

According to Refs. 25 and 27, Taylor series expansions
about y;, = 0 can be assumed for k*, -uv* and -8v*. For
incompressible flows, the expansions are valid up to about y,, =
7. This range may not be applicable for comgressible flows.
Nevertheless, such expansions for small y., can still be
assumed. With the help of (21) these expansions can be written
as:

k* = a (Yo 2 + ()3 + e . (40a)
UV =2y, (Ye)d + by (YE )4 + .. , (40b)
BV = ayg(yL P + byg(y2 ) + e (400)




where the a's and b's are time-average coefficients that are
functions of x. A similar expansion can be deduced for £*.
Again, using (21), the definition of € and its wail boundary
condition, the expansion for €+ can be written as:

e+ =23, +4byyy, + 4D

........

From these expansions, it can be easily deduced that
k+2/e*(y*)2 = 0.5. Therefore, the asymptotic behavior of
k*2/e*(y¥)2 is 0.5 and is independent of M,, and wall thermal
boundary conditions. The accuracy in which a model can
predict this quantity is a reflection of the asymptotic consistency
of the model. Table 1 shows that k-¢ model/] is indeed
asymptotically consistent while k-g model/2 is not as good. As

for the k- model, its prediction of this limiting value is poor,
therefore, it is not listed in Table 1.

The "a" coefficients can be determined from the
calculations and their values are also listed in Table 1 for
comparison. It can be seen that ay varies with free-stream Mach
number. A plot of ay versus M,, for adiabatic wall boundary
condition is shown in Fig. 11. The value of a; for the
i siblecaseismkenﬁomkef.27mdisplone5&tM..=
0. Ciearly, the trend is to approach an asymptotic value for ay at
high M,,. This decrease in ay is one of the reason why k
decreases for high Mach number flows (Figs 4 and 8). The
physical reason is that ibility tends to hinder turbulence
mixing. As a result, both turbulent shear stress and kinetic
en decrease significantly as M., increases (Figs. 4, 6, 8 and
9). Since €], = ZakMa::'oording to (41), dissipation at the wall is
also dependent on There is no clear trend for a,y and a,4.
However, the values of ayy, are consistent with those calculated
for incompressible flows [27] and direct simulation data [35].
The value of a.q is essentially zero. Since there is no data
available, its correctness cannot be verified.

Finally, the ability of the k-¢ models to predict skin
friction coefficient over a range of M,, and wall temperatures is
illustrated in Fig. 12. In Fig. 12a, the variation of C¢/(C¢); with
M,, for the case of adiabatic wall boundary condition is shown.
Here, (Cy); is the skin friction coefficient for an incompressible
flow evaluated at Ry = 104 and is determined to be 2.73 x 10-3.
The figure shows a comparison of the calculations of k-€
model/1 and k-€ model/2 with the van Driest II distribution.
Below M,, = 5, the calculated variations of Cg/(Cy); with M, are
slightly lower than the van Driest II distribution but they are
slightly higher beyond M., = 5. Essentially, there is no
difference between the predictions of k-e model/I and k-€
model/2. This means that both versions of the k-€ model give a
correct prediction of the Cg(Cy); variation with M,, for adiabaric
wall boundary condition. The predictions for the cooled wall
case are not as good, especially at low temperature ratio (Fig.
12b). Three sets of calculations are presented. These are k-€
modeV/1, k-e model/2 and a third version of k-¢ model/l with the
dk/dy term in (37) neglected. Calculations for this case are
carried out at M,, = 5, Rq = 104 and the incompressible Cy is
again determined to be 2.73 x 10-3, It can be seen that error of
5% or larger stants to accumuiate at approximately €,/6, = 0.4
for k-¢ model/1. This trend is contrary to previous calculations
(8]. An examination of the governing equations solved by other
researchers revealed that, besides differences noted in the
turbulence model equations, the mean energy equation solved by
these researchers does not include the term dk/dy in the right
hand side of (37). Indeed, when the dk/dy term is neglected, an
overall improvement is obtained. The predicted Cy at 6,/6, =
0.2 is increased by about 6%, thus giving a better agreement
with the van Driest II formula. If the additional compressibie
terms in the k-¢ equations are further neglected (k-&¢ model/2).
the calculated Cy is only improved by about 3%. The remaining
disagreement could be attributed to the assumnption of a constant

turbulent Prandtl number. When Pr; = 0.7 is assumed, the
calculations are in even better agreement with data. The reason
could be due to a further reduction of turbulent mixing as a result
of the wall being cooled. However, this effect has not been
appropriately accounted for in the models, particularly their near-
wall behavior. In other words, if highly cooled-wall flows are
1o be predicted correctly, heat fluxes should be modeled
separately rather than linking to momentum fluxes via a constant
turbulent Prandtl number.

In the past, velocity profiles in wall coordinate were
invariably plotted in terms of u? to illustrate the existence of the
log-law and the constancy of X in compressibie boundary-layer
flows. The proposal was first suggested by van Driest [37] and
later confirmed by Maise and McDonald [38] when they
analysed ten scts of data in the Mach number range of 0 - 5.

Since then, the compressible law of the wall is taken to be given
by u; rather than by u* and x is considered to be about 0.41 and
constant over the Mach number range of 0 - 5. The caiculated
and measured velocity plots given in Fig. 1 show support for the
compressible law of the wall when it is written in terms of u*
rather than u}. Furthermore, x is determined to be
approximately 0.41 and is relatively constant over the Mach
number range of 0 - 10. These results seem to conflict with the
proposal of van Driest [37]. In order to resolve this seeming
contradiction, the velocity plots of u? versus In y% for cases
55010504 (M., = 2.244, 6,,/6, = 1) and 53011%02 (M., =
4.544, ©,,/6, = 1) are shown in Fig. 13. In addition, the
compressible law of the wall as given in Ref. 38 is shown for
comparison. It can be seen that a line that is parallel to the
compressible law of the wall can be drawn through a few of the
data points spanning over a narrow range of yy,. On the other
hand, the calculated profiles are in agreement with data over a
wider range of y;,. The slopes of the calculated profiles are
roughly parallel and are slightly larger than the slope of the
compressible law of the wall shown. Therefore, irrespective of
how the velocity profiles are ploued, the calculations are in good
agreement with data. However, the slope of the log-law is given
by 1/0.41 only when the profiles are plotted in terms of u*.

L_Conclusions

The k and € equations for compressible flows are derived
by assuming that there is no dynamical similarity between the
compressible and incompressible fields. Therefore, the
influences of fluctuating density on the mean and wrbulence
fields have to be accounted for in the modeled equations. This
can be accomplished by first re-casting the exact k and €
equations into forms that are similar to their incompressibie
counterparts. In other words, the viscous diffusion and
dissipation functions have to be defined exactly like their
incompressible terms. This procedure gives rise to additional
terms in the k and e equations. These terms explicitly on
compressibility and vanish when the fluid density becomes
constant. One extra term in the k-equation is related to fluid
dilatation and can be interpreted as compressible dissipation.
The others are production terms that depend on the gradients of
the mean pressure and mean viscous shears. All additional
terms are found to be relatively unimportant in the near-wall
region, or 0 < yy, < 50. This realization, therefore, allows the
near-wall incompressible models to be extended directly to
compressible flows without modifications, while still
maintaining the balance of the modeled equations as a wall is
approached. Models are proposed for the additional terms in the
k and € equatons. The constants introduced by the new models
are determined by calibrating the calculations against
measurements in compressible flows.

The near-wall two-equation model is used to calculate
compressible flat plate boundary-layer flows with different wall
thermal boundary conditions and free-stream Mach numbers.




Comparisons are made with various mean flow measurements
and with calculations of the k-o model. Good agreement is
obtained between the present calculations and measurements. In
particular, the log-law for compressible flows is recovered and
the slope of the log-law is found to be fairly independent of free-
stream Mach number for the range, 0 € M, < 10, tested. Even
though k-w model gives a correct prediction of u* versus In y:,.
their velocity comparison in terms of <U>/U,, versus y/d shows
substantial discrepancy with data. The discrepancy increases
with increasing Mach number and can be attributed to a near-
wall behavior that is not asymptotically correct.

The following conclusions can also be drawn from the
above analysis. Firstly, Morkovin's hypothesis is valid up to a
free-stream Mach number of about 5 for flat plate boundary-
layer flows with adiabatic wall boundary condition. This means
that the effects of fluctuating density are becoming more and
more important as M., increases beyond 5. Secondly, the
assumption of a constant turbulent Prandtl number is not
appropriate for cooled wall thermal boundary condition. The
reason is further reduction in turbulent mixing due to a cooled
wall and this effect is not correctly accounted for in a constant
turbulent Prandil number approach. Most likely a heat flux
model is required if the characteristics of cooled-wall
compressible boundary-layer flows are to be predicted correctly.
Thirdly, it is important to model the near-wall flow correctly if
the overall boundary-layer characteristics are to be predicted with
confidence. This point is substantiated by the k-e model
calculations where all additional compressible terms in the
turbulence equations are neglected. These results are in good
agreement with measurements even though they differ slightly
from the predictions of k- model/l1 where all the additional
terms are retained. In other words, an asymptotically consistent
near-wall model is more important to the prediction of
compressible boundary-layer flows than the inclusion of
fluctuating density effects in the modeled equations. Fourthly,
the predicted near-wall characteristics are very similar to those
calculated for incompressible flows. In the range of free-stream
Mach number tested, the calculated near-wall characteristics are
essentially independent of Mach number and wall thermai
boundary condition. Very near the wall, viscous diffusion of k
is balanced by the dissipation of k. Beyond yy, = 15, dissipation
is balanced by mean shear production of k. In between these
two regions, viscous and turbulent diffusion of k, production of
k and dissipation of k are of importance in the budget of k. The
additional compressible terms in the k-equation are essentially
negligibie in the near-wall region up to yy, = 50. This is the
reason why the model also performs well when the additional
compressible terms are neglected in the equations. Finally, the
term ok/dy in the mean energy equation makes a significant
contribution to the caiculated Cy in the highly cooled wall case.
Traditionally, this term is neglected. However, present analyses
show that even though it is relatively unimportant in flows with
adiabatic wall boundary condition, it cannot be neglected in
flows with a highly cooled wall. The inclusion of this term
degrades the prediction of C;. It is believed that the degradation
is a result of an incorrect modeling of turbulent heat flux.
Therefore, improvements should be directed at the relaxation of
the constant turbulent Prandil number assumption.
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Model 107
Case | M. o8 % | agx104] ayx o

55010504 | 2.244 | 1.0 |x.emodeyt| 00987 | 7.167 | -0.465 0.50

55010504 | 2.244 | 1.0 |k.emodel2| 0.0992 | 7.198 | -0.998 0.50

53011302 | 4544 | 1.0 |k-emodel1| 00824 | 6.700 -6.44 0.50

53011302 | 4544 | 1.0 |x.e model2| 00836 | 6.760 | -11.79 0.50

73050504 | 10.31 1.0 | k-e models1| 0.0741 | 6.630 89.5 0.50

73050504 | 10.31 1.0 | k-e model2| 0.0771 | 6.740 | -131.0 0.51

59020105 | 5.29 | 0.92 |k-e modey/1]| 00784 | 6.120 11.1 0.50

59020105 | 5.29 | 0.92 | k.e model2| 0-0788 | 6.140 -5.88 0.50

Table 1. Asymptotic near-wall behavior of the turbulence properties.
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ANALYSIS OF THE EFFECT OF INITIAL CONDITIONS
ON THE INITIAL DEVELOPMENT OF A TURBULENT JET

Soong Ki Kim," Myung Kyoon Chung,” and Ji Ryong Cho*
Korea Advanced Institute of Science and Technology, Seoul, Korea

The effect of the initial condition at the jet exit on the downstream evolution, particularly within the potential
core length, were numerically investigated as well as with available experimental data. In order 10 select most
dependable computational model for the preseat numerical experiment, a comparative study has been performed
with different wrbuleace models a1 k-¢ level, and it was found that the k-e-y model yields superior prediction
accuracy over other conventional models. The calculated results show that the potential core Jength and the
spreading rate the initial mixing layer are dependent on the initial length scale as well as the mirbulent kinetic energy
at the jet exit. Such effect of the initial length scale increases with higher initial mrbulence level. An empirical
parameter has been devised w collapse the calculated data of the potential core length and the spreading rate with

various initial conditions onwo a single curve.

Introduction

It is well known that the potential core length, the
spreading rate and the asymptotic peak turbulence intensity
vary widely from experiment 10 experiment in the jet initial
region.'? Husain and Hussain®’ showed experimentally that the
boundary layer state, laminar or turbuient, the momentum
thickness and the fluctuation level in the initial boundary layer
at the jet exit were important factors which govern the
downstream jet development. Gummark and Ho* found that
such scatter of the experimental data stems from spatially
coherent disturbances in individual facilities. They considered
the initial instability frequency as one of the important initial
conditions affecting the jet evolution.

In addition to the condition of the initial boundary layer,
however, since the jer exit flow field is composed of the
boundary layer near the inner wall and the core flow in the
central region, the turbulent state of the initial jet core must
also affect the downsream jet evoluton process. Turbulent
intensity in a laboratory jet is typically 0.5% or less, while
those in practical turbojet and turbofan engines have been
reported to be between 3% and 15%.° Thus, in the initial
region of the jet flow, the mixing layer and the turbulent core
should interact with each other. If the level of the initial core
turbulence is low, the effect of the interaction may be small or
negligible. However, if it is sufficienty high, the flow field in
the initial region should be regarded as a complex flow
according to Bradshaw's category.

Vlasov et al.” reported that the potential core length
significantly decreases with increasing initial core turbulence.
More elaborate experiment was performed by Raman et al.’
who kept the exit mean velocity profile and the boundary layer
state nearly the same, but varied the core turbulent intensity
between 0.15% and 5% by using various rurbulence generating
grids. From the variation of the mean velocity along the jet
centerline, they concluded that the turbulent intensity in the
initial corc has only small effect on the jet evoiution.
However, considering that the freestream length scale is an
imponant parameter for the development of the turbulent
boundary layer, which has been vividly demonstrated by
Hancock and Bradshaw®, the length scale of the core
turbulence should be considered as an additional controlling
parameter for the downstream jet development.
Unfortunately, however, experimz sl darta of the initial length
scale or dissipation rate are aimost unavailable from published
reports. Therefore, in the present study, a computational
analysis is carried out to systematically investigate the effects
of the turbulent intensity and the length scale in the initial core
region on the initial development of a turbulent jet flow.

* Graduate student, Department of Mechanical Engineering.
** Professor, Department of Mechanical Engineering.
+ Present affiliation : Research Engineer, Korea Institute of
Machinery and Meuais.

Since most previous computational studies have been
concentrated on the flow field in the self-preserving region,
those on the jet initial region are only scarcely found in open
literasures. Isiam and Tucker’ computed the turbuient flow of
a jet initial region by a revised mixing length model.
Meanwhile, computational wrbulence models such as k-€ and
Reynolds stress models have serions "anomaly probiems”
when they are applied to compute turbulent free shear flows:
“round-jet / piane-jet anomaly™® and "plane-wake ! plane-je:
anomaly™. Recently, Cho and Chung" developed a new -
€-y model and made comsiderable improvement in the
prediction accuracy for free shear flows in their similarity
regions.

In the present study, firstly, three variants of &-€ model and
the new k-g-y model were applied to the initial region of the
round and plane jets to prove that the k-g-y model is more

reliable than other models. Secondly, using the k-€-y model
the effects of the initial core turbulence, i.e. the turbulent
kinetic energy, and the dissipation rate or length scale are
systematically investigated, and the results are compared with
available experimental data in the initial jet region.

Computational Models

In order to numerically examine the initial jet evolution
process which exhibits quite complex nature of turbulence, a
dependable compurational model must be employed. As is
well known, the k- model has a number of variant forms
which has been formulated to remedy the vulnerable mode!

coefficients of the siandard k-e model under certain
circumstances. One of such weaknesses in computation of
free shear flows has been expressed by a wrm "round-jer /
plane-jet anomaly™"°. Specifically, the predictions of a round
jet and a plane jet with the same model constants show
inconsistent results ; If the model constants are adjusted with
reference to the spreading rate of the plane jet, the computed
spreading rate of the round jet is higher than that of the piane
jet by as much as 25% whereas most experimental dats
demonstrate that the round jet spreads slower than the plane jet
by about 15%.

Pope'® attributed the anomaly to the neglect of the mean
voriex stretching effect in the source term of the dissipation

equation, and introduced a vortex swetching invariant term ¢ =
(k1e)QQ, S,,, where Q and S are the rate of mean rowation
and rate of mean strain tensors, respectively. Note that the
invariant x has a positive value in the round jet whereas it
vanishes in the plane jet. Thus, the modified form of k-¢
model suggested by Pope is as follows :
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Here the model constants are ; C,=0.09, 0,=1.0, 6,=1.3,

C.,=1.45, C,=1.90, C.,~0.79.

Hanjalic and Launder*> found that the rate of spectral
energy transfer across the wave number space, which is nearly
equal to the dissipation rate, is significantly promoted by
irrotational deformation which is associated with normal
strains. They also noted that the irrotational deformation has
larger value in the round jet than in the plane jet, which

stimulated them to propose the following variant of the k-¢
model to solve the “round-jet / plane-jet anomaly" problem.
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where C,=0.09, 6,= 6,=1.0, C,=1.44, C,=1.90, C,=4.44,
C,.=0.33.

Quite recently, Cho and Chung'? showed that, although the
above two variants improve the consistency in predicting the
plane jet and round jet with varying degree of accuracy, such
modifications do not yield any better solution to the "plane-jer
/ plane-wake anomaly problem” which was raised as another
computational anomaly through AFOSR-HTTM-Stanford
Conference on Complex Turbulent Flows in 1980."' With a
lengthy discussion about the role of intermittency in the
mixing layer between the shear flow in the core region and the
ambient potential flow outside the jet boundary, they proposed

a new k-€-y equation model as follows ( See Cho and Chung'?
for details ) :
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Proposed model consuants are; C,=0.09, C,=0.1, 0,= o=
6,=1.0, C,=1.44, C,=1.92, C,=0.30, C,=0.10, C,;=1.6,
2=0.15, C,=0.16.

For more detail computation, the Reynolds stress model
may be utilized. However, it has been widely demonstrated
that when it comes to compute the simple free shear flows, the
Reynolds stress model yields similar prediction accuracy as
the k-¢ model', and no attempt has been made at modifying

the Reynolds stress model to solve the anomaly problem. For
this reason, it was not included in the present numerical
investigation

Initial Conditions and Computational Method

It is assumed that the velocity profile at the exit consists of
two regions: a boundary layer near the inner wall and the core
layer in the central region. The initial boundary layer is
further assumed to be in a fully developed turbulent state.
Thus, all turbulent parameters in that region can be estimated
by those of a fully developed mrbulent boundary layer over a
flat plate. In practice, Husain and Hussain showed that the
mean velocity and the turbulent intensity profiles in the initial
boundary layer at the jet exit are close to the flat plate data.
Therefore, we picked up the mean velocity profile and the
turbulent kinetic energy profile from Klebanoff’s experiment
on a flat plate. And the dissipation rate data were calculateg
by assuming a local equilibrium. There have been a large
number of jet experiments, however, unfortunately, we can not
find any experiment which measured the initial levels of the
trbulent kinetic energy and the dissipation rate in the core
region, simultaneously. Therefore, we are managed to assume
them within a physically reasonable range.

In the core region at the jet exit, the mean velocity, the
turbulent kinetic energy and the dissipation rate were assumed
uniform, but with their magnitdes being different for different
cases. In order to specify the relative magnitude between the
turbulent kinetic energy and the dissipation rate, i.e. the initial
eddy viscosity level &*/€, in a physically realistic range, the
data from a grid-generated trbulence were adopted. Comte-
Bellot and Corrsin'! presented various data set of the energy
decay of the grid turbulence. Fig.l represents the relations
between the length scaie and the intensity of turbulence for
three cases in Comte-Bellot and Corrsin. From these relations,
a total of 20 pairs of data were used to specify the initial
turbulent kinetic energy and the dissipation rate in the core
region at the jet exit. Since the boundary layer profiles are
nearly invariant within 50% of the boundary layer thickness, 5,
the initial profiles of the mean velocity, the turbulent kinetic
energy and the dissipation rate are smoothly connected in the

region 0.58-8.

The upwind finite-difference procedure'* was used 1o solve
the system of the governing equations. Predictions of the jet
flow reported below were obtained by using 200 cross-stream
nodes, 50 uniform nodes inside the jet exit diameter and 150
stretched nodes outward. The jet exit mean velocity Ue was
20 m/sec and jet exit diameter D or width H was 10 cm, hence,
Reynolds number based on D or H was about 1.3 x10°. Initial
boundary layer thickness and the momentum thickness were
assumed 6mm and Imm, respectively. The turbulent kinetic
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Fig.] The initial conditions of the jet exit core region selected

from Comte-Bellotand Corrsin: 0 ;Ry=3.4x10%, & Ry

=6.8x10°, 0 ;R,~13.5x10"%
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energy and the dissipation rate were estimated by assuming u*
=1.0 m/sec.

Results and Discussion

Performance Tests of Computational Models

In the present investigation, the standard k-2 model e
modified k-€ models by Pope, and Hanjalic and Launder, and
the k-€-Y model were applied to compute the initial flow field
of a plane jet and a round jet for a case with «/k-JUe =0.01,

Le/D=0.2 in Fig.1. Table.l represents the predicted potential
core lengths and spreading rates. The spreading rate can be

defined in various ways. The shear layer width at 8 certain
downstream location x is determined by either B =y, ,-y,, or
B, =Y, Yess » and the vorticity thickness 5, defined by =Ue/(d
U/dy) ... Where y,, . ¥,, and Y,y indicate cross-stream
locations from the jet centerline where the local mean velocity
is 10%, 90% and 95% of the centerline mean velocity,
respectively. The symbol x, represents the potential core
length.

By comparing the predicted values in Table.l, it is
concluded that the k-€-y model provides the most reasonable
predictions for all jet parameters. Specifically, the prediction
of the potential core length is remarkably improved, which can
also be appreciated from Fig.2 and 3. In Fig.3, the
experimental data show that the turbulent kinetic energy at the
jet centerline increases monotonically in the potential core
region. However, all models failed to reproduce such
increase. From the exact irbulent kinetic energy equation, it
can be seen that, since there is no mean shear in the potential
core, the turbulent kinetic energy should simply decay. Thus,
it is likely that either a certain unknown mechanism exist in
the core region or the real flow had some initial shear at the jet
exit. Hussain and Husain® explained that this occurs because
the core potential fluid is exposed to a ‘massaging’ effect of
motions in the mixing layer all around of, which argument
however cannot be supported by the governing ficld equation.
Nevertheless, the k-€-Y model predicts very fairly the variation
of the rbulent kinetic energy along the centerline except in
the potential core region.

Fig.4 represents the mean velocity profile in similarity
coordinate at about the end of the potential core region.
Before the end of the potwential core region. the initial mixing
layer artains similarity. This can be further clarified by the
fact that the shear layer thickness varies linearly °. In all
computations of the mean velocity, the turbulent shear stress

Table | Potendal core lengths and initial spreading rates of jet flows

( k. /Ue=0.01. Le/D=Le/H=0.2)

Flow Model and experiment X %!-i-l % 28_"
dx
k-e-y 457D 0.163 0.175 0.141
round  Hanjalic and Launder's k-£ 833D 0.154 0.158 0.076
jet Pope's k-€ 789D 0.146 0.152 0.112
Standard k<€ 721D 0.155 0.162 0.128
experiment 490D  0.16-0.165' 0.158-0.202° 0.112-0.175°
k-g-v 480H 0.163 0.177 0.155
plane  Hanjalic and Laundersk-¢  10.10H 0.163 0.168 0.110
jet Standard -¢ 8.74H 0.151 0.159 0.136
experiment 450H" 0.155 - 0.180' - 0.155 - 0.179*
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Fig.2 The comparison of model on the variation of the
streamwise mean velocity along the centerline in a roundjet :

experimental data : © ; Raman et al. : predictions for J/E/Uz
0.01, L /D=0.2: predictons : ; k-e-y model of Cho and
Chung ; — —; k-& model of Hanjalic and Launder, ~---; k-€
model of Pope, —- — ; standard k-€ model.

c.0

Fig.3 The comparison of models on the variation of the
twrbulent kinetic energy along the centerline in a roundjet :
experimental data : o ; Raman et al. for v’ JU,=0.5%, assume
view'=0.6u’ : predictions for /k./U=0.01, L /D=0.2, lines the
same as Fig.2.

and the turbulent kinetic energy, the k-€-Y model outperforms
over the k-¢ models as can be seen in Figs.4,5 and 6. The
better performance of k-€-y model in the core region( (y-y, )/
(Y4.1-Yes)<0 ) may be attributed to the correct representation of
the interaction between the mean velocity gradient and the
intermittency gradient by the &-€-y model (see, for details, Cho
and Chung).

Bffects of the Initial Conditions on the Downstream
Evolution

In order to investigate the effects of the initial conditions on

the jet downstream development, the k-€-Y model was utilized.
The initisl conditions for the present computation were
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Fig.4 The streamwise mean velocity profiles in the inital
similarity region of a round jet : experimental data : o ;
Bradshaw et al., a ; Husain and Hussain : predictions : ——;
k-e-y model of Cho and Chung ; — — ; k- model of Hanjalic
and Launder, -- -- ; k-& model of Pope, —- — ; standard &-€
maodel.
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Fig.5 The Reynolds shear stress profiles in the initial
similarity region of a round jet : symbols and lines the same as
Fig 4.

selected from Fig.1 as discussed previously. Fig.7 reveals that
the potential core length is smaller for higher initial wurbulence
level, but that the centerline mean velocity decay rates after
the core region are nearly the same for all cases. Computed &
variations along the centerline in Fig.8 agree well with
experimental data only after the core region. For initially high
turbulence level, experimental data of the turbuient kinetic
energy decay near the exit and then increase monotonically,
but the computed one decays continuously in the potential
core. The discrepancy between these two observations is not
yet understood.

The variations of the potential core length and the
spreading rate with different inital conditions are represented
in Fig.9. If the level of the initial turbulent kinetic energy is
increased, the potential core length is reduced and the
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Fig.6 The turbulent kinetic energy profiles in the initial
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Fig.7 The variation of the streamwise mean velocity along the
centerline in a round jet with the kinetic energy of the exit core

wrbulence for Ry=34x10* inFig.l : o0 ; JEJfUm0.01,
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Fig.8 The variation of the turbulent kinetic ew&dong the
centerline in a round jet with the kinetic energy of the exit core
turbulence : experimental data from Raman et al. : o ; w/U,
=0.5%, 4 ; u'/U,=5.0% : prediction for Ry~3.4x10%in Fig.1,
lines the same as Fig.7.
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Fig.9 The variation of the predicted potential core length and
the sprcadingmeinaroundjetwim initial conditions as a

function of intial murbulence level. : 0 ; Ry=3.4x10%, & Ry~
6.8x10%, o ; R,=13.5x10° : (a) the potential core length ; (b)
the spreading rate.

spreading rate becomes large. Also, it can be seen that the
effect of the initial length scale is such that increasing initial
lenglhscaleshoﬂcnsthepotenﬁllmlenﬂhmdaugmems
the spreading rate. Moreover, such effect of the initial length
scale is magnified at increased initial wrbulence ievel.
Consequently, the mixing is promoted by increasing both the
lnithlmrbulentkimdcemrgymmwddlenm:cﬂe.
msismmcmmmmmmmfmm
the mixing layer. Similar conclusion can be drawn from the
experiment of Hancock and Bradshaw®, who carried out an
experiment of the effects of freestream turbulence on a flat
plate boundary layer.

Fimﬂy,mmmhmdendeviﬁubyﬁd-mdmw
colhpndncdcuhmddanmaﬁnglemm The
panmecrfomdhmunyhmmﬁp. 10(a) and (b),
where the number 80 is an empirically determined constant.
Alldannlcelyfallonadn;lccumumbemhﬂm
msmmwfm»mummmm
(not shown in this peper).
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Fig.10 The variaton of the predicted potential core length and
the spreading rate in the initial region of a round jet withgtilx‘ﬁdal
condition as a function of a nondimensionai parameter :
symbols the same as Fig.9 : (a) the potential core length ; (b)
the spreading rate.

Conclusions

The effects of initial conditions at the jet exit have been
numerically investigated. As a most reliable computational

model, the k--Y turbulence model has been selected by
comparing the prediction accuracies of various turbulence
models at k-€ level. It was found that the standard form and a

couple of variants of the k-€ model yield too lengthy potential

core and lower spreading rate, whereas the k-€-Y model
reproduce faithfully the turbulent flow field in the jet initial
region.

The caiculated resuits show that the potential core length
and the spreading rate in the initial mixing layer are dependent
on the initial length scale as welil as on the turbulent kinetic
energy at the jet exit. Such effect of the initial length scale
increases with higher initial turbulence level. An empirical
parameter has been devised to collapse the calculsted data of
the potential core length and the spreading rate with various
initial conditions onto a singie correlation curve.
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THE INFLUENCE OF BULGES ON BOUNDARY-LAYER INSTABILITY
By
S. Elli and C. P. van Dam

Dept. of Mechanical, Aeronautical and Materials Engr.
University of California, Davis, CA

Abstract

Local disturbances caused 2

by a spanwise surface corruga-
tion affect the position of the
boundary-layer transition, and
so the drag, of an object. This
premature transition from lami-
nar to turbulent flow is often
associated with a separation of
the laminar boundary-layer from
its surface (Fage, 1943). Also
the roughness-induced separation
bubble provides an important
link between the pressure and
velocity fluctuations in the
environment and the development
of the disturbance in the lami-
nar boundary-~layer, i.e., the
receptivity problem (Morkovin,
1990: Bodonyi et al., 1989).

To investigate the influ-
ence of a laminar separation
bubble on boundary-layer insta-
bility, a separated flow gener-
ated by a velocity gradient over
a flat plate was analyzed by
direct numerical simulation us-
ing finite-difference solutions
of the Navier-Stokes equations.
The bubble acts as a strong am-
plifier of the instability waves
and a highly nonlinear flow
field is shown to develop down-
stream of the bubble (fig. 1).
Consequently, the results of the
direct numerical simulation dif-
fer noticeably from those of the
classical linear stability theo-
ry proving the fact that the
nonparallel effects together
with the nonlinear interactions
are crucial to this flow devel-
opment (Fig. 2).

In the present paper, the
effect of physical perturbations
such as humps and hollows on
boundary-layer instability is
analyzed. This problem has been
considered theoretically by sev-
eral researchers (e.g., Nayfeh
et al., 1987 and 1990; Cebeci et
al., 1988). They used linear
stability theory in their ap-
proach which does not include
the nonparallel nor the nonlin-
ear effects. Therefore, to ac-
count for these important ef-
fects in studying flow over
humps and hollows the direct
simulation technique is being
implemented in generalized coor-
dinates.
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STABILITY INVESTIGATIONS OF AIRFOIL FLOW BY GLOBAL ANALYSIS

Marek Morzyrhiski
Hermann Fottinger-Institut
Technische Universitit, Berlin

Abatract

As the result of global, non-parallel flow stability analysis
the single value of the disturbance growth-rate and respective
frequency is obtained. This complex value characterizes the
stability of the whole flow configuration and is not referred
to any particular flow pattern. The global analysis assures
that all the flow elements (wake, boundary and shear layer)
are taken into account. The physical phenomena connected
with the wake inatability are properely reproduced by the
global analysis. This enhance the investigations of instability
of any 2-D flows, including ones in which the boundary layer
instability effects are known to be of dominating importance.
Assuming fully 2-D disturbance form, the global linear stabi-
lity problem is formulated. The system of partial differential
equations is solved for the eigenvalues and eigenvectors. The
equations, written in the pure stream function formulation,
are discretized via FDM using a curvilinear coordinate sy-
stem. The complex eigenvalues and corresponding eigenvec-
tors are evaluated by an iterative method. The investigations
performed for various Reynolds numbers emphasise that the
wake instability develops into the Karman vortex street. This
phenomenon is shown to be connected with the first mode
obtained from the non-paraile] flow stability snalysis. The
higher modes are reflecting different physical phenomena as
for example Tolimien-Schlichting waves, originating in the
boundary layer and having the tendency to emerge as insta-
bilities for the growing Reynolds number. The investigations
are carried out for a circular cylinder, oblong ellipsis and air-
foil. It is shown that the onset of the wake instability, the
waves in the boundary layer, the shear layer instability are
different solutions of the same eigenvalue problem, formula-
ted using the non-parallel theory. The analysis offers large
potential possibilities as the generalization of methods used
till now for the stability analysis.

Introduction

The boundary layer stability analysis based on the so-
lution of the Orr-Sommerfeld equation is a useful tool for
practical analysis of the laminar-turbulent transition. The
only competing method is based on purely empirical formu-
las, characterized most often by the shape parameter.

It is widely accepted that infinitely small disturbances,
although amplified according to linear stability theory are
not able to onset the laminar-turbulent transition unless the
amplification reaches some value 0 & factor has to be intro-
duced to correct the results of the analysis. The eV method
bas been develop to match the results of the empirical an
theoretical investigations.

The laminar-turbulent transition is usually preceded by
the Tollmien-Schlichting waves. Several receptivity experi-
ments (Morkovin [4]) were provided to understand the phe-

Frank Thiele
Abteilung Turbulenzforschung
DLR, Berlin

nomena of the Tolimien-Schlichting waves generation. It is
commonly accepted that Tolimien-Schlichting waves are ge-
nerated by an external source of disturbance (as for example
acoustic excitation) and that the non-parallel or non-uniform
effects enhance the feedback between the wave and the ex-
citation. These non-parallel and non-uniform effects are the
viscous boundary layer growth, the change of the surface
curvature and variation of the surface static pressure. The
growth of the boundary layer is evident near the leading edge
of the blunt body, change of the surface curvature causes
the non-parallelity of the flow, surface static pressure chan-
ges significantly in the separation region. It is characteristic
that these three problems were studied separately. Goldstein
[1] solved analytically the problem of evolution of Tollmien-
Schlichting waves near the leading edge. The influence of
sudden change of the geometry was investigated by Gold-
stein [2] and Ruban [3] .

These investigations have one common feature - the as-
sumption of slow variation of the fiow in the streamwise direc-
tion as necessary condition for weakly non-parallel analysis.

Elliptic nature of the Navier-Stokes equation describing
the flow suggest that the phenomena in all these regions are
not independent and influence each other. The question ari-
ses if interactions of the leading edge geometry, boundary
layer and wake can be described by a single theory. The
natural choice is to drop the parallel flow assumption and
to treat the flow in all these regions as a whole. The con-
sequence is the attempt to use the non-parallel flow, global
stability analysis. The non-parallel theory was succesfuly
used to study the wake instability |10, 9, 8, 7, 12]. There
are no theoretical limitations to apply this analysis also to
various geometries, as for example the airfoil. Because the
assumptions of the non-parallel theory is a generalization of
the classical parallel flow analysis, one can expect that this
method is adequate not only for determination of the wake
instability. The instability of the boundary and shear layer
must be reflected in the eigenvalue solutions of the problem.

Govemin;ﬁmiom

Linear stability theory is concerned with the development
in time and space of infinitesimal perturbations around a gi-
ven basic flow. If this basic flow is assumed to be paral-
lel, the classical theory of parallel shear flow stability can
be applied. This method has been also successfully used for
nearly parallel flows for which the multiple-scale method, ad-
opting the concept of "slow” variation of flow parameters in
one direction, is valid. In general, non-parallel case only the
two-dimensional theory taking into account the non-parallel
effects is adequate. The equations of this theory are briefly
presented here.

The problem was solved in the pure (Lagrangian) stream
function finite difference formulation. This formulation, not




very common in the Navier-Stokes equations solvers, offers
certain advantages for the eigenvalue analysis. The primitive
variables formulation ([9]) resuits in much larger matrices.
Although the eigenvalues are equal for velocities and pressure
one bas to deal with the full system. This difference in size
is even more evident becauce the matrix entries are complex
for the eigenvalue analysis.
The unsteady incompressible Navier-Stokes equations writ-

ten in the stream function formulation take the form:

9 - 1 -
5+ (Vx¥)V-p-alag=0 (1)

P =& (2)

We assume that the stream function J(z,y,t) isasumof a
steady part ¥(z,y) and the unsteady disturbance ¥/(z,y,¢) :

©)

The disturbance value is assumed to be small compared to
the stream function value. Introducing equation (3) into (1)
we obtain the nonlinear equation:

z/‘;(z, yt) = IZ(Z-', y)+ J"I(zv ¥ t)

[§+(Vx¢)-v¥--l—-A] AG+(V x§)-V(AG+AY) = 0 (4)
Assuming a small disturbance allows the linearization of the
equation (4) i.e. we ignore the terms containing (¢)? .
the disturbance equation we separate the time and space de-
pendence: . ‘

W(z: Yy t) = ‘ﬁ(zv y)e-”\‘ (5)
where

h==(St+1i0) {6)

Introducing the above relationship into (4) results in the li-
near partial differential equation:
- - -1 o
MG - (Vx¢)-VAG=(V x ¢)-VA¢+EA’¢ =0 (7)
The fundamental difference between this equation and the

Orr-Sommerfeld one, which is derived in similar manner as-
suming the disturbance form as:

¥(=,9,t) = G(y)ele*=2) (8)

is that, while Orr-Sommerfeld equation is an ordinary diffe-
rential equation, equation (5) is a partial differential equa-
tion. This means different methods of solution and numerical
problems encountered for the two cases.

To solve the problem for an arbitrary flow geometry the
curvilinear body fitted coordinate system should be used for
the solution of the equation (1) and (7). For orthogonal
metric the following relations are valid:

gii=0 , ¢'=0 , i#j (9)

hence equations (1) and (7) can be written as:
g" [E¢| ey ¥, - egj j'pliiii] =0 (0
M) - ™) o).+, ¥t —y”wlm] =0 (11)

The symbol ' denotes the covariant derivative of the function.
For further specialized metric tensor coefficients

o = a*(&)g(é,n)
g2 = Bn)g(&,n)

only g(§,n) and its first order derivatives g, and ¢, have to
be calculated for any transformation.
Reynolds number Re and Strouhal number St are expres-

(12)-

sed as:
Re:=%= | giim gf (13)
Discretized, equation (11) can be written as:
(A= AB)p =0 (14)

and represents the generalized eigenvalue problem.

For the eigenvalue calculations complex numbers can be split
into real and imaginary parts so that only the real arithmetic
has to be applied. Then the two parts of equation (2.10) may
be written:

A¢r - ArB‘Pr -+ AiBlPi =1

Api = A\iBy, + A, Byp; =0 (15)

Solution

The discretization of the Navier-Stokes equations (11)
and disturbance equation (12) is accomplished using the fi-
nite difference method. In both cases the thirteen-point sten-
cil was used. The accuracy of the derivatives for such a stencil
is maximum 0(h?) for the fourth order terms.The unsteady
version contains implicit stepping in time.

For all the calculations the orthogonal O-type mesh ob-
tained by the conformal mapping is applied. The Karman-
Trefftz transformation was used for the airfoil calculations.
The metric coefficients (13) are expressed analytically by
means of symbolic manipulation program to assure the ma-
ximum accuracy.

Boundary Conditions
For the steady Navier-Stokes equation solution the follo-
wing boundary conditions are used:

=0 , $,=0 onthebody (16)

Dw

D=0

The collocation of the vorticity transport equation is made

only for the outflow. For the infiow the Dirichlet boundary

condition with the value of the potential flow solution is ta-

ken. The boundary conditions for the disturbance equation
(12) are:

Yn = Wparn in the farfield (17)

¢=0 , @a=0 onthebody (18)
Dw Dy . .
D o, Dt tn the farfield (19)




The Dirichlet boundary condition (zero disturbance) is in-
troduced for the inflow. The introduction of the convective
boundary conditions appears to be an important factor of
improving the numerical accuracy, especially for the steady
and unsteady flow calculations.

Solution of the eigenvalue problem

In any eigenvalue problem the question arises whether all
the eigenvalues are sought or whether determination of only
one or few is satisfactory. Solving similar problem Zebib and
Kim et al. [10,11] applied the QZ type decomposition from
the standard libraries. The advantage of finding all of the
eigenvalues is that no guess values have to be made. For rela-
tively small matrix size, resulting from the use ot the spectral
method or crude FDM meshes this procedure is acceptable
and was used in our earlier investigations (7). Jackson ap-
plied for the unsymmetrical, complex generalized eigenvalue
problem, appearing in the non-parallel flow stability theory
the inverse iteration method [9). This concept is also adopted
in our present investigations. The eigenvalue, closest to the
guess value and the related eigenvector are both determined
at the same time. Till now it is the only realistic method for
very large equation systems.

The following equations explain the principle steps of this
method. Applying the Newton-Raphson method to equation
(14) we obtain

(A =AM B) (™ + dp™) —=dAMBp™ =0 (20)
which can be written as:
(A- ,\(u)B),,(nH) = Bq:(") (21)
where the normalization is performed as follows:
W(M-l) = ‘P(") + dp™ (22)
and
(€); = 6 (23)

denotes a unit vector. The correction of dA(™ is calculated
from: )

(né1) . -
X - (C')Tﬂ("'”)

(24)
The iteration process involves the repeated solution of the
equation (21), normalization of the eigenvector and correc-
tion of the eigenvalue. This process continues until conver-
gence of the eigenvector and eigenvalue is achieved. The pro-
cedure, which consists of LU decomposition at each step with
a quadratic rate of convergence, was replaced by a method
using only one LU decomposition. The convergence is then
only linear but the back-substitution time is significantly re-
duced compared to the decomposition time, justifying maay

iteration steps:
(A= AB)' Byl = g+t (25)

The scheme is found to be convergent to the eigenvalue clo-
sest to ), and to produce the appropriate eigenvector.

Numerical results
The linear stability analysis consist of two steps. First

the steady solution of the Navier-Stokes equations has to be
found. In practice both, the steady and unsteady solution of

Figure 1: Steady flow solutions for the circular cylinder flow

the Navier-Stokes equations was performed. The unsteady
one served as the reference data for the comparison to the re-
sults of eigenvalue analysis. It is characteristic that obtaining
of the unsteady solution pear the critical Reynolds number
is difficult. For symmetrical fiow some external forcing has
to be introduced. The response of the flow field is dependent
on the way the disturbance is introduced. The nearly neutral
stability of the fiow caused that the influence of the distur-
bance dominates the flow even after a long time. In this
case the purely numerical aspects of the computation are of
much greater significance. Also unsymmetrical flows near the
critical Reynolds number requires a lot of CPU time to be-
come fully unstable. The flow patterns of initial periods are
different from the "fully developed” unsteady ones (Fig.12).
Near the critical Reynolds number such patterns can persist
over a iong time requiring significant amount of CPU time
to obtain the real periodic state. Some codes fail to carry
out the calculations long enough in time and due to unphysi-
cal boundary conditions the solution breaks down when the
vorticity reaches the outflow boundary. The unsteady simu-
lation for the Reynolds number higher than the critical one
is easier. For this reason always the higher Reynolds number
unsteady solutions were taken for the comparison with the
stability analysis.

In the linear stability theory the Navier-Stokes equati-
ons are linearized about a steady flow. The quality of the
steady solution bas then the direct influence on the eigen-
value analysis. The accuracy of the solution is the best for
the circular cylinder flow and is decreasing for the ellipsis
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Figure 2: The growth-rate and the Stroubal number for the
circular cylinder flow.

and airfoil flow where leading and trailing edge can cause
numerical problems even for meshes generated by the con-
formal mapping. In case of limited computer resources it is
satisfactory for the numerical simulation of the fiow to use
relatively crude mesh spacing on central, upper and lower
parts of the airfoil. In this case the gradients of the quan-
tities along the boundary layer are not very large. For the
eigenvalue analysis however, also the fine discretization in
this direction is very important. The attempt to detect the
Tollmien-Schlichting waves necessities at least several tenth
of points for 'one period preserving also the fine discretiza-
tion in the radial direction. The compromise for these two
contradictory requirements was partly obtained by calcula-
tion of the steady solution on one mesh and interpolation of
the result on another mesh, more suitable for the stability
calculations.

The eigenvalue solution was calculated for the external
fiow around the circular cylinder, ellipsis and an airfoil. The
circular cylinder served as the source of reference data, for
the validation of the program because a lot of numerical and
experimental results is avaiable. The only existing results
for non-parallel analysis are the circular cylinder results(10,
9]. The flow around the ellipsis was investigated to analyze
different eigenmodes. The modes characterized by higher
frequency are clearly appearing for high Reynolds numbers.
Because of the extremely long wake for Re > 200, causing
several numerical difficulties such an analysis could not be
castied out for the circular cylinder. Finally the NACA 4412
airfoil flow for a = 0° and a = 15° was shown to examine the
potential possibilities connected with the eigenvalue analysis
of this geometry.

Circular cylinder results
For the symmetrical flow around cylinders it is always,

Figure 3: Real (a) and imaginary (b) part of the eigenvector.

theoretically, possible to obtain a steady-state solution, even
above the critical Reynolds number. The sireamlines pat-
terns obtained for the steady flow around a circular cylinder
are shown in Fig.l. These results served as the input data
for the eigenvalue analysis. The guess value for the Strouhal
number is 0.12 and the growth-rate 0. The result of the cal-
culation consist of the complex eigenvalue for each Reynolds
number together with a complex eigenvector. The growth.-
rate and the corresponding frequency as the function of the
Reynolds number is shown in Fig.2. Some results of our pre-
vious investigations using the QZ method are also plotted.
The resuits of these calculations are compared with those
obtained by Zebib [10], which uses the non-parallel analysis
in the spectral stream function formulation together with a
full-matrix eigenvalue solver of a QZ-type. For the inverse
iteration method, used in our computations, the critical va-
Iues are Re,. = 46.23 and St. = 0.1345.

The real and iinaginary part of an eigenvector for the in-
creasing Reynolds number is depicted in Fig.3. Over a wide
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Figure 4: Eigenvector velocities (imaginary part): (a) below
Re. (Re = 40) (b) above Re. (Re = 50).

range of Reynolds numbers the eigenvector (disturbance) pat-
terns are very similar, showing the physical aspects of the
phenomena to be already present in flows of fairly small
Reynolds number. The increase in Reynolds number allows
these modes to cross the zero-growth-rate line and emerge as
instabilities. The problem arises if there is any difference in
eigenvector patterns bellow and above the critical Reynolds
number. It is known from the paralle] flow stability analy-
sis that the wake stability is governed by its characteristics
in the vicinity of the rear stagnation point. Careful study
of the eigenvector values near the cylinder shows (Fig.4) the
difference in the disturbance patterns above the Re.. This
enhance the onset of the Karman vortex street.

To evaluate how realistic are the obtained eigenvalue so-
lutions the disturbance is summed with the steady-state solu-
tion for Re = 90. As the reference the unsteady flow simula-
tion for Re=100 is taken (Fig.5). The same periodic patterns
are present in both pictures. This proves that for the cylinder
fiow instability the non-linear effects are not significant.

Ellipsis flow

Following the approach for the circular cylinder flow the
elliptic cylinder was analyzed. It is known from experiments
and pon-parallel flow stability analysis of Jackson, performed
for the bodies with different cross-sections that the proper
scaling of Stroubal number is based on the dimension per-
pendicular to the main flow direction. For such a scaling its
value is not much different for various shape of the cylinder.
The critical Reynolds number reflects also the overall shape
of the body. The relation between the axis ratio of the el-
lipsis and the critical Reynolds number was studied earlier
(8]. For the oblong ellipsis situated parallel to the flow di-
rection the critical Reynolds number is increasing while the
slope of the growth-rate curve becomes smaller, comparing
to the circular cylinder results. As can be expected the Kar-
man vortex street mode results differ only slightly from ones
obtained for the circular cylinder. The eigenvector patterns,
growth-rate and frequency relations for increasing Reynolds
numbers are similar to the circular cyiinder ones. The in-
teresting results are obtained also for the Reynoids number
higher than the critical one. We assume that the steady flow
solution coincides with the real one in the boundary layer and

i
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Figure 5: Karman vortex street (a) superposition of thg di-
sturbance and steady solution, Re = 90 (b) unsteady simu-
lation, Re = 100




Figure 6: Higher mode eigenvector (real part) for the 1:5
ellipsis flow, Re = 200

the shear layer near the body, even for the Reynolds number
higher than the critical one. The justification for such an
assumption are the experimental investigations of Kourta et
al. {13]) and Unal and Rockwell [14] in the higher Reynolds
number range the Karman vortices are formed not directly
behind the cylinder. Between the cyinder and the vortex
street a dead fluid zone is found, bounded by two nearly
parallel shear layers. As the Re):0lds number increases the
length of the dead-fluid zone decreases and the location of
the first instability waves in the shear layer moves upstream.
According to the results of the parallel flow stability analysis
the unsteady behavior of the fluid is governed by the flow in
direct neighborhood of the body. This conclusion allows us
to cut the steady solution and limit the computational do-
main. The fact that the length of the wake, obtained as the
steady-state solution of the Navier-Stokes equations exceeds
the assumed "infinity” distance (the wake end is outside the
computational domain) is in context of the eigenvalue ana-
lysis not relevant.

This steady fiow solution is was used as the base for the
eigenvalue analysis. The assumed guess frequency is higher
than for the Karman vortex mode. The result of the higher
mode analysis is depicted in Fig.7 and 8. The growth-rate
is a function of both Reynolds number and mode, so that
different modes are prefererntially amplified as the Reynolds
number increases. In Fig. 7 the growth-rate and the Strouhal
number for higher mode is depicted together with the first
one for the ellipsis having the axis ratio 1:5. The temporal
evolution of the waves is shown in Fig. 3. The amplitude of
the wave is raising in the direction of the separation. The
waves on the upper ard lower surface of the ellipsis are shif-
ted in phase as the result of superposition of the symmetric
pattern of disturbances and antisymmetric stream function.
The characteristic patterns for all higher modes investigated
are the family of branches of disturbance streamlines having
sequentially positive and negative values. Each branch is
ended with a cell localed in the vicinity of the maximum
velocity gradients in the boundary or shea: 1ayer. The eigen-
vector patterns should be analyzed in connection with the
steady flow solution. The disturbance is added to it to ob-
tain the unsteady flow. In the steady solution two regions
can be distinguished - "soft” part where the siream function
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Figure 7: The growth-rate and the Strouhal number for the
for 1:5 ellipsis flow

values are small, containing the boundary layer, separation
and wake region and the "stiff” part where the stream func-
tion values are large in comparison to the disturbance. It is
obvious that when adding the disturbance and steady state
solution only the "soft” part is "modulated” while the "stiff”
one is practically not influenced (Fig.8). For this reason the
considerations concerning the eigenvector patterns outside
the "soft” region have very limited practical meaning. This
conclusion is confirmed by numerical calculations, showing
that the "soft” regions of the eigenvector are related to the
growth-rate and frequency value. The rest of the field is more
likely influenced by numerical aspects of the computations.

For the Blasius profile instability the Tollmien-Schlichting
wave length is approximately six times larger than the boun-
dary layer thickness. Since the boundary layer on the ellipsis
is relatively thick for the range of the Reynolds numbers ap-
plied in the calculations the cetected Tollmien-Schlichtiag
waves are also long. The shorter ones, for higher Reynolds
numbers require much finer me:hes, especially in the circum-
ferential direction. The eigenvector cells. located on the ellip-
sis surface near the leading edge are shorter (in the circumfe-
rential direction) than the ones in the separation region. For
a given constant frequency which is the same for the whole
field it can mean only that the wave propagates slower near
the leading edge and faster in the separation region. The
propagation »long the shear layer of the wake has approxi-
mately constant velocity. Alt the found eigenvalues for the
Tollmien-Schlichting mode were damped ones. The question
arises if the Tollmien-Schlichting wave, considered globally,
in the boundary layer and propagating further along shear
layer can become amplified without external excitation. The
growth-rate is raising with the increasing Reynolds number
and one can expect that the higher mode wave will becomne
only slightly damped or even amplified for the high enough
Reynolds number.

For any flow around the cylinder exist many eigenmo-
des. In practice near any given frequency exist an eigenvalue,
mostly with such an low growth-rate that it is unlikely that




Figure 8: Tollmien-Schlichting waves - temporal evolution
for the 1:5 ellipsis iow, Re = 200

Figure 9: Steady flow solutions - NACA 4412, a = 15°

it can emerge as the instability. Similar conclusions can be
drawn on base of the Kim [11] results.

Different eigenvectors can be classified into at least two
groups. One characteristic eigenvector pattern is connected
with the onset of the Karman vortex street. Fig.3 shows this
mode for the circular cylinder. Jackson (9] has shown the
same patterns. Similar mcde was detected by Karniadakis et
al. [5] who investigated the flow around the circular cylinder
placed in the channel bounded with two parallel plates. This
mode is called there the central mode and dominates for the
cylinder placed near the symmetry axis. Moving the cylinder
toward the wall causes switching to the "wall mode” which is
related to the Tolimien-Schlichting waves. For the external
flow around the cylinder the "wall” mode forms similar cells
located however on the body and in the shear layer.

The airfoil flow

The another cylinder flow which was considered is the
airfoil flow. As the exampie geometry the NACA4412 airfoil
is taken. Two different angles of attack were considered.
For a = 15° the stall is evident and the regular Karman
vortex street appears for high enough Reynolds number. The
pumerical simulation of such a flow was performed by Shitz
[6). For a = 0° dominating phenomena take place in the
boundary and shear layer.

First the steady flow sclution has beea found (Fig.9). The
character of the steady flow solution for a = 15° is different
from the circular cylinder one. (Fig.1, Fig.9). While for the
circular cylinder the wake consist ot two bubles, there is only
one for the airfoil flow.

The eigenvalue analysis gave the fastest growing mode
(Fig.10).

For a = 15° the flow becomes unstable at Re = 335. The
eigenvector patterns are in this case also very similar to ones
for the circular cylinder (Fig.11). - Fig.13 the comparison




Figure 12: Early time steps, NACA 4412 flow, Re = 1000,
unsteady simulation

Figure 13: Real part of the eigenvector - airfoil flow, a = 15¢  Figure 14: NACA 4412 airfoil flow: (a) superposition of the
a) Re = 100, b) Re = 600 steady solution and disturbance fields, Re = 600, (b) un-
steady simulation, Re = 1000
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Figure 10: The growth-rate and the Strouhal number for the
airfoil flow

between the real part of the eigenvector for Re = 100 and
Re = 500 is shown. The value of the disturbaace is growing
with the flow direction for both cases. It is normalized, so
the disturbanc reaches the same maximum, located in the
vicinity of the outflow boundary. Because for Re = 100
(Fig.13) the growth-rate is negative the disturbance will be
damped after a long enough time. The flow for Re = 500
is unstable. The disturbance is growing both in time and in
the flow direction. The characteristic feature for the higher
Reynolds numbers fiows is the much larger amplitudes of the
disturbance in the wake close to the airfoil.

To compare the obtained eigenvalue analysis results with
the real flow patterns the unsteady simulation was used. The
simulation was performed for Re = 1000. The early stages
of unsteady simulation exhibit patterns significantly different
from the "fully developed” ones (Fig.12). This discrepancy
is even greater in the neighborhood of the critical value. For
this reason to compare with the eigenvalue analysis one pe-
riod was taken after long enough time (¢ = 56.8 to ¢t = 64.0).
Earlier periods are "spoiled” by the initial fiow development.
The comparison of the flow patterns for Re = 600 (eigen-
value analysis) and Re = 1000 (unsteady simulation) show
very good qualitative agreement. All the mechanisms of the
vortex shedding are properly reproduced. This fact is one
more proof that the Karman vortex street, especially near
the body bas the linear character.

For the angle of attack equal 0° till Re = 800 exists no
separation on the airfoil. The higher mode solution forms two
row of cells (Fig.15) which are close to the airfoil only near the
leading edge. When added to the steady flow solution only
the shear layer behind the airfoil is effected (Fig.16). The
flow is stable because the growth-rate is negative, but if it
becomes unstable it is the Kelvin-Helmholz type of instability
of the shear layer. For increasing Reynolds numbers the cells
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Figure 11: Real (a) and imaginary (b) part of the eigenvector
- airfoil fiow, a = 15°

are moving closer to the airfoil. The disturbances form now
cells attaching the airioil and forming the *wall® mode. The
boundary layer is now *modulated” in the way simlar to the
ellipsis flow. For a = 0° the Karman vortex utreet mode also
exists, although it is strongly damped for the small Reynolds
pumbers.
Lonclusions

It was shown that noo-parallel flow stability analysis is a
method most suitable for determination of the wake flow in-
stability. Several examples , calculated for different Reynolds
numbers and geometries ranging from circular cylinder to the
airfoil with the angle of attack, show that the method is a

general tool for prediction of the wake instability. It is of
advantage of this method, comparing to other numerical ap-




Figure 15: Higher mode solution for the NACA 4412 airfoil
a = 0° a) Re = 300, b) Re = 900

-

Figure 16: Superposition of the steady solution and higher
mode disturbance for the NACA 4412 airfoil, Re = 300

proaches, that the critical Reynolds numbers and respective
frequencies are determined more precisely. The method is
able to handle the unsymmetrical wake flow. In this calcula-
tions the superiority of the stream function formulation and
iterative determination of the eigenvaiue has been proved.

Using the same method higher modes were investigated
for the ellipsis and airfoil flow. Although the investigations
had a preliminary character it can be concluded, that the
results obtained differ significantly from the first mode so-
lution. The higher mode disturbance patterns, obtained for
the ellipsis flow, added to the steady solution appear to be
the Tollmien-Schlichting wave originating in the boundary
layer. The wave propagates further along the mixing layer.
For the airfoil flow these types of modes were found but also
another instability phenomena are present in the sigenvalue
solutions. The investigation of large spectrum of eigenmodes
is even more difficult because some instability phenomena
are smoothiy ~switching” to another ones. The result of the
higher-mode analysis gives the qualitative insight into the
stability problem. The limitation of the method on present
state of its development is not the formulation but the num-
merical approach. These difficulties we hope to overcome in
our future investigations.

We belive that the method presented here will enable
the stability analysis of any flow as a whole, without brea-
king it into pieces or restricting considerations to single type
and that all instability phenomena are reflected in the non-
paralle] flow eigenvalue solutions.
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AERODYNAMICS OF A FINITE
WING WITH SIMULATED ICE

M. B. Bragg', A. Khodadoust', and M. Kerho'

University of illinois at Urbana-Champaign
Urbana, lllinois

ABSTRA

The effect of a simulated glaze ice accretion on the aerodynamic performance of a three-dimensional
wing is studied experimentally. Results are reviewed from earlier two-dimensional tests which show the
character of the large leading-edge separation bubbles caused by the simulated ice accretion. The 2-D
bubbles are found to closely resemble well known airfoil laminar separation bubbles. For the 3-D
experiments a semispan wing of effective aspect ratio five was mounted from the sidewall of the UIUC
subsonic wind tunnel. The mode! uses a NACA 0012 airfoil section on a rectangular planform with
interchangeable tip and root sections to allow for 0- and 30-degree sweep. A three-component sidewall
balance was used to measure lift, drag and pitching moment on the clean and iced model. Fluorescent oil
flow visualization has been performed on the iced mode! and reveals extensive spanwise and vortical flow
in the separation bubble aft of the upper surface horn. Sidewall interaction and spanwise nonuniformity are
also seen on the unswept model. Comparisons to the computed flow fields are shown. Results are also
shown for roughness effects on the straight wing. Sand grain roughness on the ice shape is seen to have
a different effect than isolated 3-D roughness elements.

I. INTRODUCTION

The operation of aircraft in icing conditions
are affected by large performance penalties due
to ice accretion on unprotected surfaces.
Understanding the aerodynamic penalties due to
ice accretion on both lifting and non-lifting
surfaces is important since many components are
not ice protected. The initial cost, cost of
maintenance and weight penalty associated with
ice protection systems makes their use practical
on only the most critical components.

Most icing experiments, where aerodynamic
measurements have been made, have only dealt
with two-dimensional aircraft components. The
experimental work of Bragg et. al'”, and the
corresponding computational research  of
Potapczuk’, Cebecf, and Sanka’, have focused
on a 2-D NACA 0012 airfoil with a simulated glaze
ice accretion. Only the most recent work, Bragg
et. al”® and Kwon'® have begun to investigate the
flow field about a wing with simulated glaze-ice
accretion.  Bragg measured the surface

pressures on a straight aspect ratio 5 wing with a
NACA 0012 section and the simulated ice shape
of ref. 1 - 3. Kwon'® compared Navier-Stokes
calculations to these data and showed good
resuits except near the root where the sidewall
boundary conditions differed. Sankar'' modeled
the tunne! sidewall and improved the prediction
near the root. Khodadoust and Bragg’ extended
the 3-D wing pressure measurements to include
the effect of wing sweep.

In this paper, the 3-D resuits on both the
straight and swept wing will be reviewed.
Emphasis will be on the experimental resuits with
some comparison to the computational data.
Flow visualization results will be presented which
clearly show the very 3-D features of the fiow field
about the iced, swept wing. The effect of
sandgrain and isolated 3-D roughness on the
unswept wing are discussed. The two roughness
models are shown to have a very different effect
on the wing maximum lift coefficient. However,
first a brief review oi earlier 2-D data taken using
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this ice shape should help put the current 3-D
results in perspective.

Il. EXPERIMENTAL PROCEDURE

The most recent tests were conducted in the
subsonic wind tunnel at the University of lllinois at
Urbana-Champaign. The tunnel is of conventional
design with approximately a three-by-four foot test
section, eight feet in length. The tunnel operates
at speeds from zero to 165 mile per hour at
Reynolds numbers of up to 1.5 x 10f per foot.
The tunnel is of open return type and uses four
turbulence screens and honeycomb in the settling
chamber to reduce tunnel turbulence to
approximately .07 percent. Earlier experimental
data were acquired in a similar, three-by-five foot
tunnel, at The Ohio State University.

The 2-D model used for these tests was a 21-
inch chord NACA 0012 airfoil. The first 15 percent
of the leading edge was removable so a simulated
ice accretion could be installed. The ice accretion
used was a simulation of that measured on a
NACA 0012 airtoil in the NASA Icing Research
Tunnel, Fig. 1. The icing conditions were a free-
stream velocity of 130 mph, angie of attack of 4
degrees, icing time of 5 minutes, volume median
diameter droplet of 20 microns, LWC=2.1 g/m’
and a temperature of 18 F. Under these
conditions the ice which accretes is considered
glaze. Data on the 2-D model was taken from its
approximately 95 surface pressure taps and a
wake-survey probe. Detailed measurements were
taken in the separation bubble with a split hot-film
probe3 which could detect and measure reverse
flow.

The 3-D model used for this test is a
semispan wing with a chord of 15.0 inches and a
span of 37.5 inches when in the unswept position,
Fig. 2. The swept wing has a sweep of 30
degrees and a span of 35.18 inches. A NACA
0012 airfoil section was chosen to compare to
earlier 2-D tests. The mode! consists of several
components to allow wing sweep and to allow
different simulated ice shapes to be tested
through interchangeable leading edges. Two
leading edges have been constructed for the
model ahead of the 15 percent station, a NACA
0012 leading edge and the simulated glaze ice
accretion.

The model is equipped with surface static
pressure taps. The taps are located in 5 major
rows plus a row on the tip section. The centerline

row of taps has 80 taps in the no-ice
configuration and 83 in the iced configuration.
The other 4 rows on the main element have 40
and 41 taps in the no-ice and iced configurations,
respectively. Including the 21 taps on the wing
tip section, the model has a total of 261 taps in
the no-ice configuration and 268 taps in the iced
configuration. Pressure measurements were
made using 6 Scanivalves.

A three-component sidewall balance was
designed and constructed for the 3-D experiment.
The balance is used to determine model lift, drag
and pitching moment by measuring the normal,
axial and moment. The balance is mounted
outside the tunnel with the model spar passing
through the tunnet wall and down the center of
the balance. A 0.1 inch gap was left between the
model and the sidewall to avoid any balance
interference. Doubling the gap had no
measurable effect on the model measured loads.
Balance calibration resulted in linear primary
coefficients and balance interactions.

Flow visualization was performed on the
models using fluoescent oil. The oil is placed on
the models and the tunnel is run until the flow
pattern is established. The oil is iluminated with
ultraviolet light and photographed with a 35mm
camera. The flow visualization was performed at
a chord Reynolds number of 1.2 million.

Data acquisition and reduction was performed
at UIUC using an AT&T 6386WGS PC and the
ASYST version 3.1 software written by ASYST
Technologies Software inc. A Data Translation
model DT2821-F16SE A to D board ( 12 bit, 16
channel and 140kHz) was used to acquire the
data. The sensors were excited. and the outputs
fitered and gained as needed by eight
Measurement Group model 2200 signal
conditioners.

The pressure data, both model surface
pressures and facility transducers, were acquired
and reduced in the usual fashion and a detailed
discussion will not be presented here. Pressure
data were taken at 2 nominal Reynolds number of
1.5 million. Model pressures were converted to
pressure coefficients using the tunnel dynamic
pressure measured on each of the Scanivalves.
Note that when span loads are shown, Y is taken
paraliel to the leading edge and G is taken along
the tap lines perpendicular to the leading edge.
Balance data were acquired using 300 samples
per channel at 200 Hz and averaged to get one
data point. The balance and model gravity tares
are taken and subtracted from the data. Wall




corrections are made to the data based on the
method of Rae and Pope'’. These data were
taken at a chord Reynolds number of 1.2 million.

lll. RESULTS AND DISCUSSION

2-D Results

Two-dimensional experimental results on an
airfoil with a simulated ice accretion have been
taken by Bragg et. al."®. The results shown are
with and without the simulated glaze ice accretion
shown in Fig. 1. Glaze ice accretions are
characterized by the "horns" which are the spoiler
like protrusions that are formed. These horns
cause significant alteration of the airfoil flow field
through the formation of separation bubbles.
Here some information on these bubbles is
presented as an introduction for the 3-D data. A
more detailed discussion of the 2-D ice-induced
separation bubbles can be found in ref. 13.

Figure 3 shows the split hot-film measured
velocity profiles in the upper and lower surface
separation bubbles at an angle of attack of 4
degrees.  First, consider the upper surface
measurements. The first profile is taken at x/c =
-0.02, just behind the ice horn. The flow is
separated here with a very thin region of reverse
and shear flow. The reverse fiow region grows
rapidly as we move downstream to x/c = 0.02.
Note that the reverse flow is very slow, rarely
exceeding 20 ft/sec or about 15 percent of the
free-stream velocity. As the flow moves
downstream the shear layer thickens and the
amount of reverse flow decreases until the
boundary layer reattaches around x/c = 0.16.
Immediately downstream a distorted turbulent
boundary layer is seen. Flow in the lower surface
bubble is similar with reattachment of the bubble
occurring between x/¢ = 0.12 and 0.14. Similar
trends are also seen at 0 and 2 degrees angle of
attack.

In Fig. 4 the measured pressure distribution
about a NACA 0012 airfoil, with and without the
simulated ice accretion of Fig. 1, is shown. The
clean airfoil shows the well known pressure
distribution about a NACA 0012 airfoil. Looking
on the upper surface of the iced airfoil, a region
of almost constant pressure is seen extending
from the leading edge to x/c = 0.08. This
indicates that a leading-edge separation bubble is
present. These bubbles, aithough quite large, act
like classical airfoil laminar separation bubbles'™

. The bubble and shear layer are initially laminar
with shear layer transition occurring in the region

where the constant pressure ends. The turbulent
mixing in the shear layer leads to reattachment
downstream after some degree of pressure
recovery. In this case reattachment occurs at X/c
= 0.16". A separation bubble is also seen in the
pressure distribution on the lower surface. It's
behavior is similar to the upper surface bubble.
Note that comparing the pressure distribution to
the profiles of Fig. 3, the largest reverse flow
velocity occurs at x/¢ = 0.08, the end of the
constant pressure plateau. This compares
qualitatively to the classic model of a
reattachment vortex in a laminar separation
bubble.

Figure 5 shows the bubble size and shape as
indicated by the separation streamlines for the
upper and lower surtace bubbles calculated from

the mean velocity measurements. Ata = 0
degrees both upper and lower surface bubbles

are quite large. As the angle of attack increases,
the upper surface bubble grows slowly from 0 to
2 degrees and more rapidly from 2 to 4 degrees.
Between 4 and 6 degrees the bubble grows
rapidly and the bubble becomes unsteady. The
bubble fails to reattach at angles much above 6
degrees. The lower surface bubble decreases
rapidly in size at first as a is increased, but
changes little in length between 2 and 4 degrees
angle of attack. The location of maximum bubble
thickness measured normal to the surtace occurs
at the transition location for bubbles on smooth
airfoils’*. However, here due to the surface
geometry, this does not correlate to the transition
locations indicated by the surface pressures.

Measured boundary-layer momentum
thickness for the upper surface taken from the
split hotfiilm data” are shown in Fig. 6. The
momentum thickness grows rapidly from the
separation point at a rate relatively independent of
angle of attack. For angies of attack of 0, 2 and
4 degrees a maximum value is reached in the
bubble. This maximum value moves downstream
with angle of attack, x/c = .02, .04 and .08
respectively, and the maximum value increases
with angle of attack. A local minima is reached
further downstream in the vicinity of, but siightly
ahead of the reattachment point. The values are
x/c = .06, .08 and .14, for the angles of attack of
0, 2 and 4 degrees, respectively. Downstream of
the bubble reattachment, the momentum
thickness rises slightly, falls again, then grows
steadily over the region x/c = 0.3 to the trailing
edge. At 6 degrees angle of attack the character
of the curve has changed. Here reattachment is
shown by a leveling off of the momentum
thickness and a slight decrease around x/c = .35.
The momentum thickness rises rapidly thereatfter.




This simulated iced airfoil reaches maximum lift at
7 degrees angle of attack and the bubble is
completely burst at 8 degrees angle of attack. At
6 degrees the separated flow is observed to be
very unsteady and the bubble large and
approaching a bursting condition.

Briley and McDonald® show calculated
momentum thickness values in a laminar
separation bubble on a NACA 66,-018 airfoil. Their
results show a slight reduction in momentum
thickness after shear layer transition, and a rapid
rise occurring just before reattachment. These
trends compare well to the data presented here.
In fact, as shown in reference 13, the
measurements made in the separation bubble aft
of the ice horn compare qualitatively to a classic
laminar separation bubble of the iong bubble
type.

3-D Results

A sketch of the 3D model in the swept and
straight configurations is shown in Fig. 2. Initial
tests with the 3-D model were carried out in the
straight-wing configuration. These tests were
conducted primarily to generate data to compare
to the 2-D data already available'. More recent
measurements, which have been used for
comparison to the Navier-Stokes computations of
Kwon and Sankar, have utilized the 3-D model in
both the swept and straight configurations.

Figure 7 shows flow visualization resuits on
the straight wing ata = 4 and &. At 4 degrees
the oil flow reveals a very 2-D flow. The only 3-D
character is a small interaction seen with the wing
tip vortex. Although difficult to see in these
reproductions, an ice-induced separation bubble
exists at the leading edge. It reattaches around
15 percent chord. In the 8 degree case the
bubble reattachment can be seen to vary greatly
in the spanwise direction. The maximum extent
of the bubble is over fifty percent chord, about
1/3 of the semispan inboard. Due to the 3-D
induced flow, the effective angle of attack reduces
as the wing tip is approached, and the bubble
reattachment moves forward. Near the root, the
bubble also reduces in length. This is due to a
sidewall separation which forces early
reattachment of the bubble'™®.

The presence of spanwise flow on the wing is
greatly affected by the wing sweep. This result
can be seen in CFD flow visualization'/ shown in
Fig. 8. For the CFD flow visualization, the
location of several massless air-stream particles is

tracked over the wing. The a = 4 flow
visualization clearly shows the formation of a
leading edge vortex. This vortex forms in the
separation bubble aft of the upper surface ice
horn. The vortex grows in diameter as it moves
out from the root to the tip. Spanwise velocities
in the vortex are seen to be quite Iargeg. Also
note that significant spanwise flow is seen aft of
the leading-edge vortex, particulariy near the tip.

The CFD particle-trace flow visualization
shows a complex flow field for the iced swept
wing ata = &. The leading edge separation
bubble seen at 4 degrees has now enlarged
significantly. The particles tracked in the
separation bubble are shown to heavily interact
with the particles tracked on the wing further
downstream. This is partly due to the stall
characteristics of a swept wing. A swept wing
tends to stall at the wing tip first. The CFD fiow
visualization shows a massively separated flow
region on the swept wing starting near the wing
tip and extending into the midspan region of the
wing, engulfing the separation bubble region.

In Fig. 9, experimental and computational
surface flow visualization results are shown. The
computational results are from simulated oil flow
generated by tracing the trajectories of massless
particles introduced into the Navier-Stokes flow
field. The experiment was conducted at a chord
reynolds number of 1.2 milion while the
computation was carried out at 1.5 million. Here,
the leading edge vortex grows in size as it moves
from the root to the tip. In the computational
result, the reattachment line moves back to about
80 percent chord near the tip. Ahead of this line
the vortex-induced surface flow is forward into the
free stream and towards the tip as before. A
similar result is seen in the experimental data.
Near the tip the flow is essentially parallel to the
trailing edge behind the reattachment line. The
interaction of the large leading-edge vortex and
the tip vortex causes an interesting ficw at the tip.
The flow moves forward toward the leading edge
then turns back towards the trailing edge, ail the
time flowing outboard. Near the trailing edge this
motion is more pronounced in the experimental
data. The experimental data shows a somewhat
different flow at the tip in the midchord to leading-
edge region. This is probably due to the simpler
leading-edge geometry used in the CFD model.

Span loads for both the icec and no-iced
configu-ations of the 3-D straight wing are shown
in Fig. 10. These data were obtained by
integrating the pressure data to obtain sectional
lit coefficients. At 0 and 2 degrees angle of




attack the two span loads are amazingly similar.
This indicates, as can also be seen in the 3-D lift,
that the zero-lift angle and lift-curve slopes are not
affected by the simulated ice. It is well known
that a straight rectangular wing stalls first at the
root. This is clearly seen in the iced span load
data as the sectional lift values on the inboard
wing fall below those of the clean model as the
angle of attack is increased. This occurs due to
the bursting of the ice-induced separation bubble
near the root where the effective angle of attack
is high.

The spanwise wing loading for the swept wing
is shown in Fig. 11 for positive angles of attack
form O to 8 degrees. As expected, the presence
of the ice shape has caused a reduction in wing
loading, especially on the outboard sections

where stall occurs first on a swept wing. Contrast’

this to the straight wing in Fig. 10 where the root
stalls first.

As a part of the experimental icing research,
the effect of roughness was studied on the
aerodynamic performance of the straight wing in
the iced and un-iced configurations. Two types of
roughness were examined on the straight wing:
isotropic and three-dimensional roughness. The
isotropic roughness was a 50-grit sandpaper
roughness with k\¢ = 0.0010. The 3-D roughness
were 0.25 x 0.25 inch squares, 0.054 inch high,
placed offset 0.5 inches apart in rows. InFig. 12,
the section lift performance of the smooth ice
shape is compared with the section lift
performance of the iced wing when isotropic and
3-D roughness is added. The results indicate that

in the linear region, a = -6 to 6 deg., neither the
isotropic nor the 3-D roughness significantly affect

the lift performance of the wing. In the non-linear
region, the isotropic roughness has little effect on
the positive stall angle, with a small reduction in
maximum lift. At negative angies of attack, an
earlier stall onset is seen with a reduction in lift
due to the roughness.

The effect of the 3-D roughness on the
section performance of the model seems to be
somewhat different in the stall regime. Here, a
distinct stall angle can not be detected in either
the positive or the negative range of angles of
attack. Rather, at the angle where the wing
section stalls in the smooth-ice case, the lift-curve
slope changes but the [ift continues to increase.

This phenomena could be attributed to the
size of the three-dimensional roughness used.
The 3-D roughness is three times larger than the
particies which form the isotropic roughness. The

result of the particles’ action is similar to the
results of vortex generators. The effect of the
roughness becomes particularly evident near the
stall regime. In this regime, the flow seems to
remain attached somewhat longer, therefore
producing a potentially softer stalt at both positive
and negative angles of attack. Neither of these
two types of roughness may correctly modei the
actual 3-D, and highly irregular roughness found
on actual ice accretions. More research on
surface roughness effects is needed.

The lit performance of the straight wing,
measured with a three component balance, is
shown in Fig. 13. Comparison between the clean
wing, the clean wing with roughness, and the iced
wing with rough leading edge reveal no
appreciable change in the lift curve slope of the
wing. The angle of stall, however, is shown to be
directly affected by the presence of roughness.
The straight wing stalls ata = 17° in the clean
configuration. With the addition of roughness, the
stall angle is reduced to 1¥. The presence of
leading edge ice in addition to roughness further
reduces the stall angle to 10°. In addition to the
stall angle, roughness is shown to affect the post
stall performance of the straight wing.

IV. SUMMARY

The glaze ice accretion studied in this paper
had a severe effect on the aerodynamics of the
NACA 0012 airfoil. The 2-D data clearly showed
the laminar separation bubble which is a
dominant feature of the iced airfoil flow field. The
bubble causes a large drag increase and early
airfoll stall when the bubble bursts and fails to
reattach. The bubble has the characteristics of a
classic long bubbie type airfoil laminar separation
bubble. A straight aspect ratio five wing was
tested with the same simulated ice accretion.
Flow visualization results showed a fairly 2-D flow
on this unswept wing. Significant sidewall
boundary-layer interaction was seen in the flow
visualization as well. The wall boundary layer in
the tunnel affected the results by delaying the root
stall. When this was modelled properly in the
CFD code the results for span load compared
favorably.

The swept wing was seen to have a very
three-dimensional flow field. At low angle of
attack, flow visualization shows a strong leading
edge vortex formed in the separated flow aft of
the upper surface ice hom. Spanwise flow in the
vortex is significant. As the angle of attack Is




increased, the vortex grows, especially near the
tip, and a very three-dimensional flow develops.
Since the swept wing stalls first at the tip, the wall
boundary layer has little effect on these resuits.
Comparison of the experimental results to the
computations are good.

Surface roughness effects were presented on
the unswept wing. Both sandgrain roughness and
isolated 3-D roughness elements were placed on
the simulated ice accretion. The effects were
exactly the opposite with the 3-D roughness
actually increasing the maximum lift of the iced,
unswept wing. Much more research is needed on
roughness effects on iced airfoils and its effect on
the leading- edge separation which is so critical to
the iced airfoil performance. Roughness models
more complex than simple sandgrain roughness
will have to be developed to properly reproduce
actual ice roughness effects.

Future research will include laser Doppler
velocimeter data for a more detailed look at these
3-D flow fields. This will provide a more complete
picture of the 3-D separation bubbles. Research
on roughness effects and its proper modelling are
also underway to improve our understanding of
this complex flow.
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Fig. 8 Computational Flow Tracers on the
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Numerical Modeling of Runback Water on Ice Protected

Aircraft Surfaces
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A numerical simulation for "running wet" aircraft anti-icing systems is developed. The model
includes breakup of the water film, which exists in regions of direct impingement, into individual
rivulets. The wetness factor distribution resulting from the film breakup and the rivulet configuration
on the surface are predicted in the numerical solution procedure. The solid wall is modeled as a multi-
layer structure and the anti-icing system used is of the thermal type utilizing hot air and/or electrical
heating elements embedded within the layers. Details of the calculation procedure and the methods used
are presented.

Nomenclature

specific heat
wetness factor

heat transfer coefficient between the hot air and
the inner surface of the watl

heat transfer coefficient between the outer
surface of the wall and the runback water

heat transfer coefficient between the free stream
and the outer surface of the wall

thermal conductivity

latent heat of vaporization of water

liquid Water Content

molecular mass, number of grids across film
runback water mass flow rate

rate of mass transfer per unit area
static pressure

Prandu number

rate of heat transfer

rate of heat transfer per unit area

rate of heat generation per unit volume
rivulet radius

recovery factor

Schmidt number

flowfield velocity
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velocity in a rivulet in the flow direction
temperature

thermal diffusivity

rivulet contact angle with the solid surface

equivalent rectanguiar film thickness of a
rivulet
ratio of rivulet to wetness factor, or

distance betwee‘ two adjacent surface
streamlines

droplet collection efficiency .
dynamic viscosity of water

area correction factor for heat loss from a
rectangular film to the ambient

density

surface shear force (friction)

free stream relative humidity

anti-ice air

anti-ice

property at edge of the boundary layer
evaporation from outer cowl surface
liquid film
impingement on outer cowl surface
solid wall composed of several layers
rivulet

vapor, saturated vapor

wall or runback water

at free stream conditions




Superscripts
! = layer number in the composite wall
n = Az step level (grid number in the z-direction)

{. Introduction

The problem of aircraft icing has been the focus of
study of many researchers for a number years. The
detrimental effects of ice accretion on critical surfaces can
jeopardize flight safety as well as the overall aircraft
performance. Consequently, accurate modeling and
extensive study of the icing process are necessary. Two
general methods of ice protection have been developed: De-
icing methods for the intermittent removal of ice buildup
by destroying the bond between the ice and the surface, and
anti-icing methods for the prevention of ice formation on
critical surfaces such as engine nacelles.

The availability of high-speed digital computers has
favored the use of numerical techniques and the
development of computer codes to design and analyze ice
protection systems. It is felt that the latter can minimize
the cost associated with the required experimental testing
by providing a tool that is at least capable of predicting
preliminary results.

Most studies related to aircraft icing have been
committed to the prediction of ice shapes and the
determination of their detrimental effects on aerodynamic
performance of the aircraft components. At this time,
research in running wet anti-icing svstems is quite basic,
and runback is treated in 3 #rimitive manner. The NASA
Lewis Research Center been a major contributor in
conducting and sponsoring studies related 10 computer
modeling of aircraft icing processes as well as
experimental testing in its Icing Research Tunnel (IRT).
As aresult, LEWICE [1], an ice accretion prediction code,
was developed for unprotected airfoil surfaces. The
approach used in the modeling consists of performing
mass and energy balances on the surface water. The
wetness factor issue is ignored and the runback water is
assumed to wet the entire surface at a particular location.
Consequently, the amount of required heat to anti-ice the
surface is under-estimated.

Several investigators have produced different versions
of the LEWICE code in order to improve it. To name a
few, Cebeci et. al [2] modified the flowfield calculation
module of the code to avoid the problem of multiple
stagnation points. Yamaguchi et. al [3] proposed a multi-
zone roughness model: a zone of uniform water film in the
stagnation region, a rough zone of stationary water beads,
and lastly, a zone where surface water run back as
rivulets {4]. The runback water was recently modeled by
Al-Khalil et. al [5,6,7] by incorporating a rivulet model.
This paper is intended to present the numerical calculation
procedures used including the most recent improvements
of the latter model.

Il. Mathematical Model

The runback model introduced earlier is based on a
two-dimensional mathematical formulation. The surface
water and the solid structure temperatures vary across their

thicknesses and in the flow direction along a streamline on
the surface. Spanwise temperature dependence is assumed
to be negligible. However, the latter is accounted for by
performing energy balances on control volumes whose
spanwise widths extend between two adjacent streamlines
on the aircraft surface.

Il.1 Runback Water
IL1.1 Hydrodynamics:

The rate of water impingement on aircraft surfaces,
due to the existence of undisturbed supercooled liquid water
droplets in clouds, is relatively small. This and
aerodynamic forces result in a very shaliow water film
flowing over the skin surface. Consequently, the surface
water behavior is controlied not only by aerodynamic and
body forces, but also by surface tension forces and surface
roughness.

In the direct impingement regions, i.e., in the
neighborhood of the stagnation point, the water tends to
wet the entire surface due to incoming droplets and due to
water running back from upstream locations. However, at
or downstream of the impingement limit, the liquid film
could become unstable due to surface tension forces that
cause the surface water to coalesce into individual streams,
referred to as rivulets, separated by dry areas.

A detailed study on the hydrodynamics and a stability
analysis of surface water was presented in Ref. [5]. For
completeness, some of the essential features are presented
here without further discussion. The film/rivulet flow in
the streamwise (z) direction is caused by a shear force
acting at the liquid-air interface. The latter force is
obtained from the results of the skin friction factor
computed from viscous aerodynamic calculations of the
flowfield.

A rectangular film model was chosen to
mathematically represent the heat transfer process in a
rivulet as shown in Figl. This model was found
appropriate to the current problem for various reasons
discussed in Ref. [6]. The criteria used for the new
runback water configuration are as follows:

* The wetness factor is preserved, i.e., the widths of a
rectangular film is equal to that of its corresponding
rivalet.

* The law of mass conservation requires equal mass flow
rates in a rivulet and its equivalent rectangular film,
This criterion enables one to compute the film thickness
o.

¢ Mass loss due to evaporation is associated with a
decrease in the rivulet size, i.e., its radius and,
consequently, its base width that is also equal to the
rectangular film width. This criterion enables one to
update the value of the wetness factor.

The velocity distributions within the film and the
rivulet were derived and used to obtain the mass flow rates
in each [5], as shown, respectively:
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The second criterion is used, equating the above equations,
to give:
F@)
=R
where F,(B) is a function of B derived in [7]. The above
equation shows the rectangular film thickness is directly
proportional to its equivalent rivulet radius. This equation
will later be used to update & when R is reduced due to
evaporation. Procedures to determine the conditions and
location for the breakup of the liquid layer flowing
downstream of impingement regions were thoroughly
discussed in Ref. [5]. The prediction of initial values of
R and F at breakup was also descnbed.
ILL2 Thermal Analysis:

The principal objective of this study has been to
analyze and predict the performance of anti-icing systems,
In such applications, the worse case occurs at equilibrium
state conditions. Consequently, the mathematical
formulation of the heat transfer process is based on the
steady-state energy equations. The unsteady equations are
more relevant to de-icing applications. The runback water
energy equation then follows:
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The above equation is based on the fact that
conduction heat transfer within the liquid water in the z-
direction (flow direction) is negligible compared to that in
the y-direction (across film thickness). The solution of
Eq. (4) requires two boundary conditions in the y-
direction, one at the solid-liquid interface, and one at the
liquid-air interface, and an initial condition (z=0). The
latter condition requires knowledge of the water
temperature at the stagnation point. Analytically, this is
impossible because that depends on the final temperature
solution in the water film and in the solid structure layers.
However, this may be obtained numencally in an iterative
procedure described in a later section.

The boundary condition at the liquid-air mtcrfacc is
written as:
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where the first and second term terms on the right-hand
side represent heat loss to the ambient by convection and
evaporation, respectively; and the third and fourth terms
are the sensible and kinetic heat contributions of the

impinging droplets which are of value only in the direct
impingement region.

The rate of impingement per unit area, m”imp, is
calculated from the local value of the collection efficiency
as shown:

mimp = 1 LWC V. ©

and the rate of evaporation per unit area is computed using
the Chilton-Colbum heat-mass transfer analogy. This

may be expressed as:

" h. (Pr MH;O [Pv,w- qu]
m =
i Cp. Sc Jair Mair P, - Pv,w (7)

where,

Py w= saturated vapor pressure at the local runback water
temperature T,,.

Pygp = local vapor pressure at the edge of the boundary
layer at the local relative humidity.

Application of Dalton's Law of partial pressures and
knowledge of ambient conditions yields:

Pv_.

Prop = Po 2~ 9= ®

where the relative humidity ¢.. in a cloud is generally
taken to be 100%. The saturation vapor pressure of water
is written as functibn of temperature:
031 in [ ]}
293.15 ®

PN =23 & {6’789[—— -l}
M= 4 29315 T
where the units of Py and T are (Pa) ant (K), respectively.
The recovery factor 7 in Eq. (5) accounts for viscous
dissipation in the boundary layer and is approximated

by (8]
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The properties at the edge of the boundary layer, i.e., P,
T,, and V, are computed using the perfect gas relations for
isentropic flow and the local values of the pressure
coefficient obtained from a flowfield solver.

Note that &, in Eq. (5), is an area correction factor to
account for the area differences in the rivulet and the
rectangular film models through which heat exchange with
the ambient occurs. This factor is defined as the ratio of
the rivulet free surface area to the upper surface area of the
corresponding rectangular film. From geometric
considerations, the following may be written:

£=b_ (0<F<l)\
sinf

E=1

n)
(F= l)‘




This factor is less than 10% for contact angles smaller
than 42°, and is unity for uniform film flow.

The boundary conditions concerning the solid-liquid
interface which represents the hcat exchange between the
solid wall and the runback water remains to be discussed.
These two conditions will be presented with the energy
equation of the wall structure since they are common
between the two regions.

1.2 Anti-ice Bleed Air:

A widely used method of preventing ice formation is
the hot air type due to its high reliability. In these
systems, hot air is drawn from an intermediate or high
stage compressor bleed port and ducted through passages to
the leading edges of wings, empennages, engine nacelles
or other critical areas. Due to the complexity of the flow
of the anti-icing air inside the irregular duct shapes and the
uniqueness of each design, a generalized model requires the
following assumptions:

1. The heating requirement by such a system is generally
specified by the amount of hot air supply, mg, and its
delivery temperature at the stagnation region.

2. The internal heat transfer coefficients h;, between the
air and the inside surface of the structure, is assumed to
be known from previous experience or from
experimental testing on the particular sysiem in
consideration.

3. The hot air temperature varies in the flow direction and
is assumed o be lumped in the transverse direction.

With regards 1o the above assumptions, the energy
equation of the anti-ice air may be written as:

ma Cpu 22 = @) [Td0) - Tniy=0.2)] 12)

Obviously, 7'4(z) depends on the solid wall temperature
distribution which also depends on the runback water
solutions. Therefore. the energy equations of those three
regions must be solved simultaneously.

1.3 Wall Structure:

Based on the assumption that the wall temperature is
dependent on the y and z-direction [6], the following
energy equation may be written for each layer in the
composite structure:

.J_i[;, ?.T;] PTn, € 0
102 0% 5y a3

where A(z) may be taken as the distance between two
adjacent surface streamlines which make up the strip being
analyzed. This distance is constant for a 2-dimensional
flow over a surface. The above formulation allows one to
model a heating element as one of the layers. If anti-icing
is achieved by means of a hot air system alone, the value
of g° may be conveniently set to zero for all the layers.

The boundary condition at the inner surface of the wall
may be written for the innermost layer as:

—kn Tm = g 4 i (Ta—Tw) (18)
dy

where ¢”4; is an optional prescribed heat flux distribution.
This value and h; may be set to zero for a perfectly
insulated inner surface. The above equations were
formulated as such to give the flexibility of modeling
different systems.

The two conditions that must be satisfied at each
solid-solid interface between the wall layers are continuity
of temperature and heat flux normal to the interface. Asto
the boundary conditions on the left side (stagnation point)
and the right side of the wall, they may be extrapolated
from the solutions using insulated conditions, or they may
be specified if the temperature distribution is known at
either end.

The last boundary conditions that remain are those
pertaining to the outermost layer at the solid-liquid
(partially or fully wetted surface) and solid-air (dry surface)
interfaces. They may be written as follows:

Tm=T. (0£F<]) (15)

and,

g o F I b (1F ) (T LYE ) (0F<) (16)
dy 2Cn,

The first condition is only necessary in the fully or
partially wetted regions. The second condition simply
states that heat, ¢",,, is transferred from the wall
proportionally through the wetted (to the water) and the
dry (1o the ambient) surface areas as defined by the wetmess
factor F. Note that 7,,, in Eq. (16), may be replaced with
Tw according to Eq. (15).

IIl. Numerical Solution Techniques

i11.1 Runback Water:

A fully implicit method was used to numerically
solve Eq. (5) because of the positive stability
properties [9]. Backwards differencing in the z-direction,
and central differencing in the y-direction were employed.
Applying this scheme to Eq. (5) and rearranging terms
yields:

_[dezz]n:;1+[l + 7'/'422]71»1_[7;'422]7-’.:;‘: » an
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for j=2,3,....M-1, where M is the total number of grid
points across the film thickness (in the y-direction), and n
is the grid number in the flow direction (z). Equation (17)
is written for each corresponding node which results in a
set of linear equations. The latter may be rewritten in a
matrix form and solved using the Thomas Algorithm for
tridiagonal system of equations.

However, before carrying the solution, two equations,
corresponding to j=1 (solid-liquid boundary) and j=M
(liquid-air boundary), are still required. A one-sided
difference representation of Eqgs. (16) and (5) is used for




this purpose, respectively. Equation (15) could have been
used in the runback solution while Eq. (16) is used in the
wall solution, insiead. However, that procedure was found
to be highly unstable. Thus:

h-(l-F)Ay] el 1
14 ——222 T, =T =
[ + L i M1

D) g+ b 1-F T.-’Vz]
Fw[q-w (1-F)( -2-5:) (18)

where j=1, and ¢",, is the rate of heat flux normal to the
solid-liquid interface computed from the temperature
distribution in the wall from the following:

q;l =~ Kkm 21.‘3

( at solid-liquid interface ) (19
y

A second order finite differencing was used to compute
the right-hand side of Eq. (19). At j=M, one may write,
after rearranging terms:
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The above equations may now be solved for the
temperatures at nodes j=1 through M at location z+Az
(i.e., n+1), knowing the nodal temperatures at location z
(i.c., n). The evaporation term m”eygp is computed using
the temperature at z in order to preserve the linearity of the
system of equations.

The procedure described above requires knowledge of
the water temperature at the stagnation point (z=0, or
n=1). This is obtained by extrapolation from the
temperature distributions at n=2 and n=3. Since the
solution procedure is iterative, as discussed later, an initial
guess is required to start the computations. This is
achieved by performing mass and energy balances on a
differential control volume of the surface water at the
stagnation point, which yields the following approximate
expression:

2
! inital) = [m;., (CpouTt —5) M+ G
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where g¢", is estimated assuming that heat conduction
within the solid structure occurs in the outward direction
(y). Equation (21) is only used at the first iteration. In
subsequent iterations, the extrapolation technique
mentioned previously may be used. However, this caused
slight fluctuations in the temperature distribution at the
first few nodes (n=1,2,3,4). The problem was remedied by
setting the initial water temperature equal to the average
temperatures of nodes n=2 and 3 without affecting the
remaining results.

In addition to an initial temperature, an initial water
film thickness is required. A mass balance may be

performed on a control volume of length Az, (distance
between node n=1 and n=2), thickness d, and a unit depth.
Using Eq. (1) with A=1 and F=1, this yields:

(ms;.,—mc;-p)dzl=%5/2

Solving for Jf, gives:

2u4n
I'E;

where 7 is taken as the average wall shear force between
nodes n=1 and n=2.

The conservation of mass equation of the runback
water may be readily obtained and shown to be:

m™ = m®+ A Az (MM £ ) @

& (nital) =
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Knowing the mass flow rate, the film thickness i~ the
fully or partially wetted regions may be derived from
Eqgs. (1), (2) and (3):
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where m, is the mass flow rate per rivulet. In the case
where the runback water is flowing as rivulets (F<1), the
wetness factor must be updated at each z-location. From
geometric considerations, this is derived from
F=(2RsinB)/A where R is obtained from Eq.(3).
However, if surface streamlines are not parallel (3-D flow),
great care must be taken when evaluating 4 to account for
variations in the distance between two surface streamlines
which identify the strip being analyzed.

The numerical solution of Egs. (17), (18) and (20)
requires the discretization of the water domain into grid
points. Across the liquid layer thickness, equal spacing
between the grid points was used. Along the flow
direction, two zones were selected: direct impingement
region, and downstream region. The grid spacing is
constant in each zone, but is much smaller in the direct
impingement region to accommodate for the rapidly
changing variables due to the impinging water droplets and
the flowfield characteristics.

The current model was specifically developed for anti-
icing applications where at least the minimum heat
required (o keep the surface water from freezing is supplied
1o the surface. This is because a two-dimensional phase-
change model was found to be inappropriate since freezing
will normally start at the liquid-air interface, which creates
a problem in modeling the flow characteristics of the
unfrozen water. However, since the temperature drop
across the film thickness is small, the temperature may be
assumed to be uniform across the layer. Therefore, when a
freezing temperature, or lower, is obtained during the
calculation process, an altemate method is used. This

(F=1) 4)




consists of performing a macroscopic energy balance on
the surface water to obtain the freezing fraction, such as
done in the LEWICE code [1]. Nevertheless, the rivulet
configuration and its prediction remain the same. This
enables one to predict the amount and location of ice
accumulation during a specified period of exposure time.

.2 Anti-ice Bleed Air:

The goveming energy equation of the anti-ice bleed
air, Eq. (12), is a first order ordinary differential equation
(ODE). Due to the arbitrary distribution of the heat
transfer coefficient and the wall temperatre at the inside
surface of the solid structure, a numerical technique must
be used to solve the latter equation,

A forward finite difference scheme is only first order
accurate. A more accurate and widely used technique for
solving ODE's, is the fourth order Runge-Kutta
method [10]. Knowing the temperature distribution in the
wall, from the most recent iteration, the latter method is
used to predict or update the hot air temperature
distribution in the cowl. The result is subsequently used
in the wall temperature solution at the next iteration.

In cases where anti-icing is achieved by means other
than the hot air type (i.c., m;=0), the solution of Eq. (12)
using the aforementioned technique should be avoided.
Instead, the air in the cowl is considered to be stagnant and
at a prescribed temperature. Also, when the internal heat
transfer coefficient is zero (i.e., insulated inner surfaces),
there is no need to solve Eq. (12) since the result is a
constant air temperature which does not affect the wall
temperature, and consequently the runback water

temperature.
.3 wall Structure:

A solution for the different layers in the wall structure
may be obtained by direct approximation of the goveming
equation, Eq. (13), and the corresponding boundary
conditions by finite differences. However, the control
volume approach was chosen due to its accurate
conservation properties [7]. Difference equations are
derived by performing an energy balance on each control
volume corresponding 1o a particular node. The control
surfaces of each control volume are half way between the
corresponding node and its adjacent surrounding nodes.
There exist eleven types of nodes in the wall structure.
These types are listed below and correspondingly numbered
as shown in Fig 2. which illustrates a two-layer wall
(note that the wall thickness dimension compared with its
length is exaggerated for clarity):

1. Totally internal node.

2. Inner surface side node.

3. Inner surface left-comer node.

4. Inner surface right-comer node.

5. Left-side internal node.

6. Right-side internal node.

7. Solid-solid interface internal node.
8. Solid-solid interface left-side node.
9. Solid-solid interface right-side node.

10. Outer totally/partially wetted surface node.
11. Outer totally dry surface node.

Energy balance equations for all node types are derived
and presented below. The following definitions were used:

B=Bz, xy=Kel g =4z gnd Q=41
Ay ki Ay Ay (26)

where [ and /+1 indicate the layer numbers corresponding
to a particular solid-solid interface. Note that in the
following, node (i,/) denotes the grid point at row "i" and
column "j", and that 4; represents the distance between the
two surface streamlines, defining the width of the wall
strip being analyzed, at column "i":

Node tvpe 1:

-
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Nodetype 3:
If the temperature distribution is not specified at z=0,
an insulated boundary condition is used:
. . 2 . A
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Node type 4:

Similarly, for unspecified temperature:
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Node type 5:
For unspecified temperature;
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Node type 6:
For unspecified temperature:
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Node type 8:
For unspecified temperature:
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Node type 10:

In this region, the node temperature is set equal to the
local liquid temperature at the base of the film. This is
achieved using a cubic spline interpolation technique
because the interfacial grid points of the water and the
solid do not coincide.

Node type 11
For consistency with the lower boundary of the liquid
layer, a direct differencing of the equation representing

convective heat loss to the ambient is applied. This
yields:
ha Ay he Tu Ay
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IIl.4 Solution Procedure:

The required solutions are the temperature
distributions in the anti-ice hot air, the solid structure, and
the runback water. In addition, the surface water mass
flow rate and the film/rivulets configuration must be
determined. A simultaneous solution must be carried in
the three regions: (1) runback water; (2) solid structure;
and (3) anti-ice bleed air. This may not be accomplished
in a single step due to the dependency of some boundary
conditions of a particular region on the final solution in
the adjacent region. This suggests the use of an iterative
type of numerical solution between the three regions.

The sequence of the steps utilized in the numerical
solution iterative procedure may be listed as follows:

(1) Estimate g, in Eq. (18), at all nodes corresponding
to the runback water at j=1. The procedure is to use
a local one-dimensional heat transfer mode! from the
wall to the free stream air (i.e., no conduction within
the wall in the flow direction), assuming a fully dry
surface. Any heat transfer generated due to electrical
heating elements is assumed to flow outboard o the
ambient. These assumptions were necessary to get
the iterative solution started.

(2) Compute the "initial” water temperature and the film
thickness at the stagnation location from Egs. (21)
and (22), respectively.

(3) Solve Egs. (17), (18), and (20) for the runback water
temperature distribution across the film thickness at
the next z-location. Proceed with the solution of the
latter equations by marching to the location of the
impingement limit. This, of course, corresponds to
the direct impingement region where the wetness
factor is unity. Note that the runback water mass
flow rate and the film thickness are updated using
Egs. (23) and (24), respectively, as the solution is
brought to the next level.

(4) From the impingement limit onward, check if the
criteria for film breakup are met as the march
proceeds downstream with the solution. If breakup
occurs, the wetness factor and the rivulet
configuration are predicted [S]. Then proceed with
the calculations for each step up to the end of the
structure or up to the location where total
evaporation occurs. The film thickness is updated
using Eq. (24) or (25), and the wetness factor is
updated by geometric considerations after each Az
step.

(5) Generally, a larger number of nodes is used in the
runback water than in the wall at the solid-liquid
interface. Thus, a cubic spline interpolation
technique is used to predict the wall nodal
temperatures, for node type 10, from the water nodal
temperatures at the interface.

(6) Setup the equations corresponding to conveclive
boundary condition, Eq. (36), for nodes of type 11,
if total evaporation occurs upstream of the end of the
structure.




(7) Assume a constant anti-ice bleed air temperature equal
to the delivery temperature at the stagnation region.

(8) Setup the equations corresponding to the rest of the
solid structure nodes, types 1 through 9.

(9 Solve the linear system of equations for the wall
nodal temperatures. This terminates the first
iteration.

(10) Compute ¢”,, from Eq. (19) using the temperature
distribution obtained in the previous step, and
interpolate for the runback nodes using cubic splines.
Under-relaxation of the latier values should be used
to carry a stable solution as follows:

¢H=q"m+F (g5 - g
where F is the under-relaxation factor and has a value

between zero and unity. Its actual value depends on
the particular problem under consideration.

(11) Evidently, the solution would not converge in one
iteration. Extrapolate for the initial water
temperature as previously discussed, and compute the
film thickness at stagnation from Eq. (22).

(12) Repeat the runback water solution as described in
steps (3) and (4).

(13) Set the wall temperature at the solid-liquid interfacial
nodes in the wet region by interpolation from the
water solution of step (12). Also setup the
convective boundary condition equations in the dry
region as done in step (6).

(14) Solve for the temperature of the anti-ice bleed air as
described in section 111.2, using the most recent wall
temperature distribution at the inner surface.

(15) Setup the equations corresponding to the remaining
wall nodes as in step (8), then solve the system of
linear equations for the wall nodal temperatures.

{16) Comparc the solutions ctiained in the previous step
with the corresponding solutions of step (5). If the
difference is within an acceptable tolerance, the
solution is considered converged. Otherwise,
perform another iteration by repeating the last few
steps starting with step (9).

IV. Sample Calculations and Discussion

The primary purpose of this paper was to present the
details of the mathematical development and the numerical
solution techniques of the current model. Therefore, only
one example problem will be considered in order to
demonstrate the calculation procedure. However, several
other cases were considered and presented in Ref. [11].
The complete solution to the problem is resolved in three
major steps: (1) flowfield calculations, including the
viscous layer near the wall; (2) individual water droplet
trajectory calculations using the velocities calculated in the
previous step; and, finally, (3) the heat transfer
calculations for the anti-ice hot air, the solid structure, and
the surface water.

In the following example, the solid structure is
assumed to be a NACA 0012 airfoil of chord iength equal
to 1.0 m, as illustrated in Fig. 3. The wall structure of

the airfoil is composed of five layers, typical of some
aircraft surfaces. Properties and dimensions of these layers
are illustrated in Table 1. The electrical heater, center
layer, is assumed to be turned off and heating of the
surface is accomplished by spraying hot air on the inside
surface of the cowling near the stagnation region. The air
is delivered at a temperature of 200 °C and a mass flow
rate of 0.1 Kg/sec per unit spanwise distance.

The ambient operating conditions are the following:

Flight Mach number = 0.25
« Ambient static temperature = -12 °C
« Ambient static pressure = 90.75 kPa
Angle of attack = 0°
Cloud Liquid Water Content = 1.0 g/m3
* Relative humidity = 100%
+ \lean volume droplet diameter = 20 um

The flowfield around the airfoil was computed using
the ARC2D code which solves the two-dimensional thin
layer Navier-Stokes equation. A hyperbolic grid generator
was used to produce a C-type grid structure around the
airfoil: 239 nodes along the surface and 55 nodes in the
normal direction. Grids were packed near the wall for
accurate prediction of the large gradients induced by
viscous effects in these regions. The resuiting pressure
coefficient and friction coefficient distributions are

illustrated in Figs. (4) and (5), respectively. These
coefficients are defined as follows:
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The first coefficient may be used to calculate properties at
the edge of the boundary layer, and the second is used to
compute the wall shear stress that cause the water to run
back.

A particle trajectory code was then used to produce a
collection efficiency distribution on the surface, as
illustrated in Fig. 6. Note that all the results presented
thus far are symmetric between the upper and the lower
surfaces of the airfoil. This is due to the fact that the flow
angle of attack is zero and the airfoil geometry is
symmetric.

The final step involves the heat transfer calculations.
The external convective heat transfer coefficients, between
the wall surface and the ambient air, were computed using
a sand roughness factor of k¢/c=0.0002 [1]. The internal
heat transfer coefficients, between the hot air and the inner
surface of the airfoil cowl were arbitrarily assumed since
they depend on the particular air jet nozzles design, the rate
of air flow, and the air passages geometry. These
coefficients are shown in Fig. 7.

The >dure described earlier is applied, using the
results t..us iar obtained, (o solve for the probiem variable
parar :ters. The contact angle between the rivulets and the
sur .. ien breakup of the film occurs, is assumed to be




B=40°. The actual value of 8 depends oa the properties of
the solid surface and its roughness.

The resulting average temperature distribution of the
anti-ice air inside the cowl is illustrated in Fig. 8. The air
temperature drop across the entire length of the airfoil is
approximately 85 °C. The drop occurs in a relatively
smoother manner compared to that of the runback water
average temperature, shown in Fig. 9. This is due to the
distribution of the corresponding convective heat transfer
coefficients. Since the solid wall conductivity is relatively
larger than that of water, its average temperature
distribution tends to be smoother as depicted in Fig. 9.

The distribution of the heat flux leaving the outer
surface of the airfoil is plotted in Fig. 10. The curve
peaks are due to the peaks in the distribution of the
extemnal heat transfer coefficients which correspond 10 a
transition from laminar 10 turbulent flow. Figures 11 and
12 are plots of the runback water film thickness and the
wetness factor. respectively. The sudden jumps in the
curves correspond to the breakup of the uniform film in
the direct impingement region (F=1) into individual
rivulets (F<1).

The corresponding distribution of the runback surface
mass flow rate per unit spanwise distance is shown in
Fig. 13. This system is clearly a running wet anti-icing
system. Total evaporation may be better accomplished
with electrical heating eiements such that a lars,e amount
of heat is supplied to the direct impingement regions.

V. Concluding Remarks

A numerical simulation for "running wet" aircraft
anti-icing systems was developed. The model includes
breakup of the water film, which exists in regions of direct
impingement, into individual rivulets. The wemess factor
distribution resulting from the film breakup and the rivulet
configuration on the surface were predicted in the
numerical solution. The solid wall was modeled as a
multi-layer structure and the anti-icing system used was of
the thermal type utilizing iiot air and/or electrical heating
elements embedded within the layers. The mathematical
formulation of the heat transfer process as well as details
of the numerical solution procedure were presented.

Experimental tests wcre recently conducted in the
NASA Lewis Icing Research Tunnel to validate the current
model. A detailed comparison with the numerical resuits
was not possible at the time this manuscript was written
since the data acquired were not reduced. However, similar
trends were observed beiween the computer code
predictions and the experimental results. Further detailed
comparisons will be carried in the near future.
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Table 1: Composite Wall Physical and
Thermal Properties.
. Thermal
Layer Description} Material Thickness Conductivity
Aluminum
1 Substrate Alioy 2.20 220
Inner Epoxy/
2 Insulation Glass 1.30 1.25
3 Heater” Copper 0.20 340
Outer Epoxy/
4 Insulation Glass 0.25 1.25
Abrasion | Stainless
3 Shield Steel 0.30 50
*Heater turned off
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Fig. 1: Rivulet and equivalent rectangular film models.
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Abstract

A general two-dimensional Euler zonal method
has been developed for computing flows about com-
plex airfoll geometries such as multielement and
iced alrfoils. The method utilizes a colposite
structured and unstructured grid generated using
conformal mapping and Delaunay triangulation,
respectively. The finite-volume Euler method 1s
then modified to couple solutions in the zones
with structured and unstructured grids. Solutions
about an iced airfoll and a multielement airfotll
are given as examples of applications of the
scheme.

1.0 Introdyction

The aerodynamic analysis of complex airfoil
sections continues to receive much attention tin
experimental, theoretical and computational stud-
fes. Such analyses of airfodl flows include iced
airfoils, multielement airfolls, and advanced air-
foll concepts with divergent trailing edges. Con-
ventional computational methods based on a single
zone mesh, developed for simple airfoll configu-
rations, are generally not suitable for these
geometries since a single structured grid of suf-
ficient quality cannot be generated. Zonal or
unstructured-mesh methods that can provide ade-
quate mesh resolution near high pressure gradient
regions in each zone are needed to handle the
complexity of the flowflelds. An attractive zonal
approach is to use structured meshes in most parts
of the domain and unstructural meshes in enclosed
regions next to the portions of airfoil that are
difficult to model with structured grids. The
objective of this paper ts to develop a genera)l
two-dimensional Euler method based on this
approach.

Although many methods have been developed for
the generation of structured grids around simple
geometries, few can be readily extended to comp-
1icated two- and three-dimensiona) shapes such as
msitielement or 4iced airfoils or multicomponent
atrcraft configurations. Also, in many applica-
ttons of structured grids, the quality of the
generated mesh s not uniform throughout the comp-
utational domain, resulting in poor resolution in
specific regions of importance. For this reason,
triangular (tetrahedral) meshes have proven very
attractive, since relatively complex geometries
can be meshed efficiently, and an almost arditrary
degree of mesh adaption and refinement can be
achieved by the addition of control points. Fur-
thermore, the development of flow algorithms that

*Associate Professor.
**Senior Principal Engtneer/Scientist.

do not depend on the 1inherent structure of the
grid points have eliminated the restriction of
grid structure and made triangles and tetrahedrons
suitable shapes with which to resolve complicated
geometric regions.

The debate over relative advantages of struc-
tured and unstructured grid methods is an ongoing
matter. While unstructured grid methods have the
clear advantage in that they can treat complicated
problems such as a complete aircraft configuration
under static or dynamic deformation,! they have
been regarded as less efficient and less accurate
than their structured counterparts.z- Lack of
robust acceleration techniques, such as multigrid
schemes for three-dimensional problems, 1s also a
clear disadvantage. Furthermore, direct and
1mplicit solvers for unstructured grids are devel-
oped, but 1in general are not as effictent agd
effective as their structured counterparts.‘-
Structured flow solvers have many other highly
desirable features including efficient grid gen-
eration techniques and smaller computer time and
memory requirements.

An efficlient way of analyzing a complex geom-
etry of several components 1s through a zonal
approach, using composite structured and unstruc-
tured grids. This approach requires considerably
less memory than using an entire unstructured mesh
capable of handiing the same geometry. In view of
the different desirable features of structured and
unstructured meshes, the present zonal approach
takes advantage of structured meshes in appropri-
ate reglons while using the versatility of the
unstructured grids in others.

In this paper, a general two-dimensional zonal
boundary interactive scheme utilizing combinattons
of structured and unstructured mesh types is pre-
sented. Solutions for flow about multielement and
iced airfolls are given as an example of the
application of the scheme.

2.0 Grid Generation

A brief grid generation process will be des-
cribed 'n this section. A base structured grid
which encompasses the entire flowfleld is first
generated using existing methods. Regions of
undesirable grid quality are then identified and
categorized as subsequent unstructured-mesh zones.
Triangular grids can be generated in these regions
using existing mesh points and additional points
as necessary. An unstructured grid generation
method bpsed on ODelaunay triangulation, developed
earlier, is applied for this purpose. An

essential requirement for obtaining satisfactory
meshes when using the Delaunay triangulator 1is




appropriate placement of interior points, since
this scheme gives no guidance on where to place
the mesh points. Inappropriate placement of mesh
points results in poor quality meshes, even though
they satisfy the Oelaunay criteria. Therefore,
certain criteria for introducing interior mesh
points have to be established before apptying the
Delaunay triangulattion.

The Delaunay triangulation method is applied in
three steps to generate triangular meshes in the
unstructured zone enclosed by the surrounding
structured meshes and solid surface boundary. The
first step 1s to triangulate the points along the
body and zonal boundaries in order to obtain an
initial triangulation based solely on existing
boundary points.

The second step deals with the placement of
interior points. It is important to place a suf-
fictently dense mesh of points 1in high gradient
regions such as corner regions, leading- and
trailing-edge regions, etc. A combination of
C-mesh points around the 1leading edge and
Cartesian mesh points 1in other parts of the
domain can be chosen as th; interior points.
Based on Bowyer's algorithm,’ a sertes of new
points are added one by one to the existing tri-
angulation, removing triangles close to the point
being inserted, and reconnecting the new point to
the existing nodes in such a way as to form new
triangles which satisfy the Oelaunay criteria.
This procedure 1s repeated for all new points
introduced in the domain.

The final phase 1s a grid-smoothing procedure.
This 1s necessary because points that are intro-
duced sometimes fall too close to each other,
resulting in skewed triangles, such as triangles
with large aspect ratlos. An iterative Laplacian
smoothing scheme is applied to improve the overall
quality of the unstructured mesh.

3.0 Finite Volume Scheme and Time-Stepping

Finite volume Euler methods of Jamesond and
Mavriplis and Jameson?, using fourth-order Runge-
Kutta time-stepping, are adopted to interactively
solve for the flows in different zones. These
methods are briefly reviewed here to point out
some modifications that are made in the present
work .

The Euler equation for two-dimensional inviscid
filow in A1integral form for a region Q@ with a
boundary aQ is given as

& 1] wixdy + | (fdy - gdx) = 0 M
Q o]
where x and y are Cartesian coordinates and
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Here o, u, v, p, £ and H are density, velocity
components, pressure, total energy, and total
enthalpy, respectively. For a perfect gas we have
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Thus, we only need to solve for four variables: p,
pu, pv and pE. Equation (1) 4s discretized over
individual control volumes (triangles) in a cell-
centered approximation in which the flow vartables
are stored at the center of each cell. The above
discretization procedure with the addition of
artificial dissipation terms results in a set of
ordinary differential equations.

du1
S, at ' (0(“1) - D(U‘)] =0 (3)

where Sy 1s the area of the cell, Q 1is the
spatial approximation of fluxes given by the sec-
ond part of Eq. (1), and D s an appropriately
constructed. disstipation operator.

The fourth-order Runge-Kutta scheme 1s used to
advance the solution in time from time step n to
time step n+l. With the nonlinear operator P
defined as

P(W) = £ [0(W) - D(W)] 4

we have
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The artifictal dissipation operator s calculated
in the first and third step only to save computing
costs.

In the region with structured grids Implicit
residual averaging s used to 1q8rease the base
of the CFL number. It is shown'Y that implicit
smoothing increases the stability to Courant num-
bers much greater than the Courant number limit
of the explicit scheme. The calculations pre-
sented in this work are obtalined with a CFL number
of 7. In addition, a variable time step, based

~on the maximum stability 1imit set by the local

Courant number, and enthalpy camping are used to
accelerate the convergence of the solution. Dis-
sipation terms are formed as a bdblend of second-
and fourth-order terms, coefficients of which are
adapted to the flow. The resulting scheme is
second-order accurate in the regions of smooth
flow and first-order accurate near the shocks.
To ensure that these dissipative terms are sig-
nificant only in the vicinity of a shock, the
second-order dissipation terms are scaled by the
local Laplacian in the pressure.

Similar to the structured flow solver, in the
unstructured flow solver fourth-order Runge-Kutta
time stepping 1S also used to advance the solution
in time. The support of the time-stepping scheme




here 1s, however, Aincreased by an explicitly
residua) averaging scheme. If the residuals at
cell {1 are

mw-%mmrwmn
they are replaced by

R, = cR, + 1-¢ g R
i 1 3 9 1k

where Ryy are residuals at three forming points
of the triangular cell. The residuals at nodal
points are obtained as the average of residuals
at all cells having that point in common. ¢ 1is
a constant which 1is chosen as 0.6. With this
smoothing scheme, the CFL number for the unstruc-
tured flow solver could also be 1increased to
about 7. 1

It 4s found that the CFL number 1in the two
zones must be similar to facilitate the converg-
ence of the solution in the entire domain.

4.0 Dissipative Terms

The structured flow solver uses a blend of
second- and fourth-order dissipation terms to
prevent odd and even decoupling of the solution.
The artificial dissipation for the unstructured
flow solver is similarly constructed as a blend
of undivided Laplacian and biharmonic operators.
Generally, in the absence of shocks in subsonic
flows, only biharmonic dissipation s requtired.
However, it 1s found that in regions of Tlarge
pressure gradients such as at the leading edge of
the flap, second-order dissipation terms are still
needed even in the subsonic flow regime.

To obtain the fourth-order dissipation term in
the triangular mesh zone, an undivided four-point
Laplacian operator 1s first defined as

K]
Vw, = 2 W, - 3w
1 k=l k \

where w represents the flow vartiables p, pu, pv,
and pH. The dissipation flux across a cell face,
1k, delimiting cells, 1, and its neighbors, k, are
then calculated as
) 2, _ o2
dy = e A (P - Vo) (6)

where
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Here axy and Ayy are coordinate increments of the
edge and uy, vy, ¢ are velocity components and
the speed of sound along the edge, respectively,
and are taken as the average of the values at
cells 1 and k. The Ay, term, which is propor-
tional to the size of the cell face, k, and repre-
sents the maximum eigenvalue of the Euler equa-
tion in the direction normal to the face, scales
appropriately with the time derivative in Eq. (3).
In order to more accurately scale the cells which
have higher aspect ratios, Ay s not integrated
around the boundary of(gne control volume, as is
commonly done. The ¢ 1s a constant defined
later. X

The second-order disstipation ter$ i1s similarly
constructed by replacing v2u1 and v¢wy 1in Eq. (6)
with wy and wy, respectively, so that we have

(2)
Gy = e Aoy - W)

where cgi) should be of order one near a shock and
and of order gax)2 in regions of s?ogth flow to
preserve the eco?g,order accuracy of the scheme.
To ensure this, ¢ is then scaled proportional
to an undivided Laa*acian in the pressure
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It 1s found, however, that a better scaling factor
for the edges that are on the solid boundary is
the pressure gradient in the surface-wise direc-
tion. Thus, the pressure gradient term for cells
on the solid boundary 1s defined here as

Prar = 2Py * Py,

Piay * 204 *Py,
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where 1, 1-1, and 1+1 are the adjacent cells to
cell {4, which_are on the surface boundary. For
these cells, c§} is then taken as

(2)
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It s known that the fourth-order dissipation
term may produce overshoots in the vicinity of a
shock; therefore, they are turned off by defining

cg:) = max[0, cg:) - cgs)]

Here ¢y and «c4 are
constants.

empirically determined

The final form of the dissipative flux is then

(2) (4) 2 2
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This dissipatton flux, di, s added or sub-
tracted from 1ts adjacent cells consistent with
the direction of the normal to each edge. This

ensures that dissipation 1s conserved throughout
the region.

" The treatment of the boundary conditions is
known to affect the convergence and accuracy of
the solution. The wall pressure can be extrapo-
lated from the pressure at the center of the
boundary cell using the method given 1in Ref. 8.
However, in the present calculations it 1s found,
in both the structured and unstructured solvers,
that the norma) pressure gradient, ap/an, 1s
negligible, and the pressure of the boundary could
be assumed equal to the pressure at the center of
the boundary cell.

It 1s important to note that when the soiid
boundary condition is imposed in the unstructured
flow solver, however, 1s that setting the normal
components of the fluxes to zero and only account-
ing for the pressure terms in the momentum equa-
tion does not necessarily satisfy the flow tan-
gency condition on the boundary. A stronger




formulation is needed to ensure this requirement.
In the present cell-centered scheme, a stronger
form of the boundary condition is imposed in order
to compute the artificial dissipation terms more
exactly. Flow varlables p, pu, pv, H in imaginary
cells inside the solid surface are extrapolated
based on the assumptions of no normal flux and
equal tangential fluxes between cells outside and
inside the boundary. These values are then used
in the calculation of dissipation terms associated
with the edges that are on the boundary. This can
be shown to be equivalent to explicitly setting
velocities to be tangent to the wall, as suggested
in Ref. 11.

5.0 Zona)l Interference Scheme

Interaction between neighboring zones could be
greatly simplified by ensuring that neighboring
structured and triangular grids have complete,
common, edges. This could easily be done along
the zonal boundaries by choosing the structured
grid points as forming points of the triangular
grids. Mass, momentum and energy fluxes through
the zonal boundaries are conserved by using the
valyes from neighboring zones when calculating
fluxes. This requires maintaining information on
the grid interaction, including indexes of struc-
tured grids next to the boundary triangular
meshes, and vice versa.

Careful attention must be given to calculation
of dissipation terms for the boundary cells in
order to ensure conservation of dissipation terms
throughout the flow. Oissipation terms for the
triangular, boundary cells are calculated by
extracting information from both the structured
and unstructured zones and vice versa. Inappro-
priate treatment of dissipation terms can result
in solution inaccuracy along the zonal boundaries
or can produce considerable decoupling of the
solution in boundary regions of both 2zones and
contaminate the solution in the entire region. It
is also found that comparable CFL numbers and
degrees of smoothing 1in different zones, are
essential to improve the overall convergence of
the solution in the entire region.

6.0 Results

The multielement airfoil of fig. 1 with over-
hang of 5%, gap-to-chord ratio of 10%, and flap
angle of rotation of 15° 1s considered as the
first computational example. The isobar solution
at a Mach number of 0.2 is shown in Fig. 2, which
indicates a smooth solution across the zonal
boundaries. This solution is obtained by using
256 x 32 O-meshes, part of which are replaced by
976 triangular meshes. A CFL of 7, along with a
variable time step based on a maximum 1imit set
by local Courant number, is used in both zones.

Figure 3 shows the details of the solution in
the unstructured zone and 4indicates that the
strong form of the boundary condition discussed
earlier tn Sectton 4.0 adequately satisftes the
flow tangency requirements on the solid boundary.
The solution also accurately predicts the locattion
of the stagnation point on the leading edge of the
flap. Furthermore, even though the equations are
inviscid, the additton of dissipatton terms intro-
duces viscous flow like vorticity in the flap
well,

Calculated surface pressures for both the main
airfo!l and the flap are compared with experi-
mental data of Ref. 12 1n Fig. 4(a,b). The exper-
imental results are obtained at a M = 0.195 and
Reynolds number of 500,000 based on unextended
chord length. The comparison s obviously very
poor in the flap well region due to the viscous
effects which are dominant in this region. Our
inviscid model also 1s unable to predict the sep-
aration that occurs on the upper surface of the
flap as indicated by the experimental data.

Our second computational example deals with
iced airfoils. The analysis of the aerodynamic
performance of 4dced airfolls has been of great
interest to atrcraft designers. In order to find
ways to prevent ice formation on wings, one needs
to accurately predict the flowfield about 1§ed
airfoils with various forms of 1ce shapes. 3
Ice accretion on an airfoil produces very irreg-
ular and rough surfaces on the leading edge
region. These shapes normally have concavities
and convexities which cannot be modeled using a
single zone structured grid.

An iced NACA 0012 airfoill with an etght-minute
ice surface computed using the fortified Lewice
program of Ref. 14 1s shown in Fig. 5. A compos-
ite structured and unstructured grid is generated
consisting of 198 x 32 O-meshes, part of which are
replaced by 932 triangular meshes. The unstruc-
tured mesh region is extended far enough to cover
the 1irregular ice shape on the leading edge. A
converged solution obtained using this mesh s
presented in subsequent figures.

Figure 6 shows the fsobar solution obtatined at
M=0.2 and o = 4°. The compressibility effects
at this Mach number are less than 2%, according to
the Prandtl Glauert rule. The contour lines vary
smoothly across the zonal boundary indicating that
the conservation of fluxes 1s well satisfied.

Figure 7 shows the velocity vectors in the
leading-edge region. This figure clearly 1indi-
cates that there are multiple stagnation regions
where streamliines approach the surface from the
farfield and are divided in two opposite direc-
tions on the surface. There s also a smal}
region of reverse flow on the upper surface.
Similar to the first example, although the equa-
tions are 1inviscid, the addition of dissipation
terms produces viscous flow like vorticity behind
the ice shape on the upper surface.

.The computed pressure distribution on the
surface {s compared with the surface panel method
results in Fig. 8; good agreement 1s indicated.

7.0 Conclyston

The objective of the present work 1s to develop
an efficient and reltable two-dimensional zonal
approach capable of coupling structured and un-
structured grid zones for complex atrfoil shapes.
This approach requires considerably less memory
compared to using an entirely unstructured mesh
capable of handiing complex geometries. It also
takes advantage of the different desirable fea-
tures of structured and wunstructured meshes.
Computational examples are presented that demon-
strate the applicability of this method to the
analysis of the flowfields such as those arounc




iced airfoils, multielement airfolls, and blunt
and divergent-tratling-edge atrfoils. The method
could also be coupled with a boundary-layer method
to include the viscous effects.
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Experimental and Computational Ice Shapes
and Resuliing Drag Increase for a NACA 0012 Airfoil
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Abstract

Tests were conducted in the Icing Research
Tunnel (IRT) at the NASA Lewis Research Center to
document the repeatability of the ice shape over the
range of temperatures varying from -15°F to 28°F.
Measurements of drag increase due to the ice
accretion were also made. The ice shape and drag
coefficient data, with varying total temperatures at
two different airspeeds, were compared with the
computational predictions. The calculations were
made with the 2D LEWICE/IBL code which is a
combined code of LEWICE and the interactive
boundary layer method developed for iced airfoils.
Comparisons show good agreement with the
experimenial data in ice shapes. The calculations
show the ability of the code to predict drag increases
a; the ice shape changes from a rime shape to a glaze
shape.

Introduction

Over the past few years, the Icing Research

- Tunnel (IRT) at the NASA Lewis Research Center

has gone through several rehabilitations which have
improved its capabilities in simulating real icing
conditions. Some of the improvements include a new
and more powerful fan motor, 2 new spray bar
system, a new digital control system, and various
improvements to the IRT structure. As a result, the
IRT can now provide more accurate control of the
airspeed and temperature, more uniform clouds
covering a larger cross-section of the test section,
and lower liquid water content.

Although various test programs have been
conducted in the IRT with the improved capabilities,
there has not been a comprehensive test program to
document the repeatability of the data obtained in the
IRT. Tests were conducted to address the
repeatability issue during the months of June and
July of 1991. The test matrix was focused to
document the repeatability of the ice shape over a
range of air temperatures. During the tests, the drag
increase due to the ice accretion was also measured.
This test program also provided a new database for
code validation work.

The LEWICE code, which is being used by
industry and government to predict two-dimensional
ice accretions, was combined with the interactive
boundary layer method to also predict the resulting
serodynamic penalties! (This combined code is
referred to as the 2D LEWICE/IBL code.). An initial
validstion study? was made last year, in which the
code predictions were compared with the
experimental results of Olsen, et al3 The results
showed good agreement between the experiment and
the calculation for both ice shapes and the resulting
drag. More comparisons of calculations with
experiments] data were recommended and the recent
repeatability test provided s needed data set.

In this paper, comparisons of measured ice
shapes and predicted ice shapes are presented for a
range of temperatures with two different airspeeds
and liquid water contents. Resulting drag increase is
also compared between the experiment and the
calculation.

Nomenclature

A damping-length constant

¢ airfoil chord

Cq drag coefficient

k,; equivaient sand-grain roughness

k; dimensionless sand-grain roughness
L  mixing length

Tt total air temperature

Ts static air temperature

uy friction velocity

V.. airspeed

x  surface coordinate

y coordinate perpendicular to x
y

+ aReynolds number, yu,/Vv
X  universal constant, also used as a sweep

parameter
v kinematic viscosity
Icing Research Tunne]

The NASA Lewis Icing Research Tunnel is a
closed-loop refrigerated wind tunnel. Its test section
is 6 ft. high, 9 ft. wide, and 20 ft. long. A 5000 hp
fan provides airspeeds up to 300 mph in the test
section. The 21,000 ton capacity refrigeration can
control the total temperature from -40°F to 30°F.
The spray nozzles provide droplet sizes from

approximately 10 to 40 um median volume droplet
diameters (MVD) with liquid water contents (LWC)

ranging from 0.2 to 3.0 g/m’. A schematic of the
tunnel, shop, and control room is shown in Fig.1. A
detailed description of the IRT can be found in
reference 4.

Test Mode]

The test model was a 6 ft. span, 21 in. chord
NACA 0012 sirfoil with a fiberglass skin. The model
was mounted vertically in the center of the test
section. During all icing runs, the model was set at
4° of angie of attack. The model installed in the test
section is shown in Fig.2.

Test Condisi

The test points used to make comparisons with
the caiculation in this paper were selected from the
larger test matrix which is fully described in
reference S.




The test conditions given in Table 1 can be
grouped into wwo: 1) low airspeed and high LWC,
and 2) high airspeed and low LWC. Water droplet
size was held constant for both groups. Airspeed,
LWC, and spray time were selected so that both
groups would have the same water intercept (i.c.

airspeed x LWC x spray time = constant). Temperatures
were selected to cover glaze, rime, and transition
regimes.

Test Methods

A typical test procedure for icing runs is listed
below. .

The model angle of attack was set.

The target airspeed and total temperature were
set.

The spray system was adjusted to the desired
MVD and LWC.

The spray system was turned on for the desired
spray time.

The tunnel was brought down to idle and the frost
beyond the ice accretion was removed.

The wake survey was traversed across the airfoil
wake with the tunnel at the target airspeed.

The tunnel was brought down to idle again for ice
shape tracings and photographs.

The airfoil was then cleaned and the next data
point was performed.

Drag Wake Survey

The section drag at the mid-span of the airfoil
was calculated from total pressure profiles measured
by a pitot-static wake survey probe. The wake
survey probe was positioned two chord lengths
downstream of the airfoil as shown in Fig.2. The
wake surveys were made only when the spray cloud
was turned off. During sprays, the probe was kept
behind a shield to prevent any ice accretion on the
tip of the probe. The wake probe was mounted on an
automatic traverse system, and the traversing speed
was adjustable.

Description of 2D LEWICE/IBL

LEWICE is a two-dimensional ice accretion code
which has a Hess-Smith two-dimensional panel code
for a flow calculation, a droplet trajectory and
impingement calculation code, and an icing
thermodynamic code. Detailed description of the
code can be found in reference 6.

Several modifications have been made to the
origina]l LEWICE code to add a capability of
calculating aerodynamic characteristics by making
use of the interactive boundary layer method
developed by Cebeci, et al’. Along with this new
capability, a2 modification was made to the original
LEWICE so that the calculation can be made in a
user interaction-free environment. This was achieved
by using a smoothing routine! to avoid the
occurrence of multipie stagnation points caused by
ﬂ')'c formation of irregular ice surfaces on the ice
shape.

During the development of the 2D LEWICE/IBL
code, a turbulence mode! has also been developed to
deal with surface roughness such as that associated
with ice. This was done by modifying the mixing
length and wall-damping expression of the Cebeci-
Smith model, that is

L=x(y+Ay){l-eap[-(y+4y)/A]l} ()

where Ay is a function of an equivalent sand grain
roughness k;. In terms of dimensionless quantities,

with k} = kgug /v and Ay* = Ay ug /v

0.9(Vk -k exp(-k: 16)] S<klST0
Ay* =
0.7k )03 70S k' S 2000
Q)

The equivalent sand grain roughness for ice is
determined from the expressions used in the original
LEWICE code.

The heat transfer model used in the LEWICE
code makes use of an equivalent sand grain
roughness, kg, expressed as a function of LWC,

static air temperature (Ts), and airspeed ( \. ).

The original expression for k; is in the following
form with ¢ denoting the airfoil chord and (kgs/c)pase
= 0.001177

k/c
( k,/C )ban

k, /c
(kx/c)bal

)} kfe v.

k=1 (57 Doms

Twe [

k,
( c )nn-c (3)

where each sand grain roughness parameter is given
by

k/c
( kl lc )ban )I.WC

= 0.5714 + 0.2457(LWC) + 1.25TI(LWC ) (4

k /c -
—]r, = 00477, - 11.27
% 1o ’ (5)

- 0.4286 + 0.0044139 V..
(k, /€ Jpase (6)

Recent numerical studies conducted by Shin, et
al.2 showed that the equivalent sand grain roughness
did not depend on airspeed, but did depend on the
median volume diameter (MVD) of the water
dropiets. As a result, equation (3) is modified, as
given by equation (7).

k/c
(k:/c)bac

Lk /c
(&7 Joase

k /c &
-lm luvo - Joage €

k, = 0.6839 [ Lwe.[

L,

N

where
1 MVD £ 20
k/c

eion

Juvo =

1.667~0.0333 MVD MVD > 20 (8)




The interactive boundary layer method then uses a
roughness parameter as given in equation (9) over
the predicted iced surface.

(ksiBL = 2(Kg)equation (7) 9)

Present studies as well as those conducted in
reference 2 showed that drag coefficients calculated
with the roughness parameter by the above method
were much lower than measured drag coefficients,
especially for rime ice shapes. Numerical studies
were conducted to investigate the effect of the extent
of the iced airfoil surface on drag. In the original
version of the 2D LEWICE/IBL code, roughness is
only applied over the surface of the ice. The code
was modified to allow for roughness on both the ice
and the airfoil surface downstream of the ice. The
results showed that agreement between calculated
and measured drag coefficients for rime ice shapes
became much better by extending the range of the
roughness on the airfoil surface and placing a lower
limit of kg/c = 0.002 on the equivalent sand grain
roughness, which otherwise would become very
small for rime ice. The extent of the iced airfoil
surface which resulted in the best agreement with the
experimental drag coefficients for rime ice shapes
was found to be 50 percent of the airfoil chord, and
this extent was used in all drag calculations
presented in this paper.

Resul ! Di :

This section contains a discussion of the quality
of the experimental data, and discussions of the ice

shape comparison and the iced airfoil drag
comparison.
Oual; (E . 1L

Dry airfoil drag results - Section drag was measured
with the clean airfoil under the dry condition and the
results are compared with the published data3.8.9 as
shown in Fig.3. The data of Abbott and Doenhoff8
was taken in the Low Turbulence Pressure Tunnel
(LTPT) at the NASA Langley Research Center. The
data of Olsen, et al.3 and the data of Blaha and
Evanich® were taken in the IRT.

The difference between the data from the LTPT
and the IRT can occur for several reasons:
differences in wake survey method, tunnel
turbulence level, and model condition. The LTPT
tests used a wake rake while the IRT tests used a
traversing probe. The LTPT had the freestream
turbulence intensity of the order of a few hundredths
of 1 percent. The freestream turbulence intensity in
the IRT is about 0.5 percent. The difference in the
;urface finish of & model can also have an effect on

rag.

The current IRT drag data is higher than the
previous IRT data. All three tests used the wake
survey method and the airfoils had the same chord
length. This kind of difference in drag data can come
from differences in the wake survey location and
mode! condition. The wake survey probe was located
at one chord length behind the model for Blaha's test
while it was located at two chord lengths behind the
mode) for Olsen's test and the current test. The
leading edge and the trailing edge part of the current
mode] were joined at the maximum thickness location
(30 percent of the chord) while the model used in
both reference 3 and 9 was the same one-piece

airfoil.

According to the experimental results of Gregory
and O' Reillyl0 shown in Fig.4, transition occurs at

around 40 percent chord at 0° of angle of attack for
an NACA 0012 airfoil at a Reynolds number of 3
million. The transition location moves upstream very
rapidly as the angle of attack increases. A small step
at the joint in the current model may have acted as a
trip at low angles of attack causing an early
transition to turbulent boundary layer. At higher
angles of attack, the step may have acted as an
additional roughness source in the turbulent
boundary layer, which increased drag.

Drag associated with an iced airfoil is normally
dominated by the pressure drag due to a large
scparation caused by a pressure spike at the upper
horn. At 4° of angle of attack, where all the icing
runs were made, an increase of the friction drag by
the step of the current mode! is believed to have a
minimal effect on icing drag data.

Dry runs were made prior to each icing run. Each
icing run was repeated at least twice, which resulted
in more than 28 dry airfoil drag measurements at a
4° angle of armack. The percent variation was
calculated in the same way as Olsen3 by taking the
standard deviation and dividing it by the average.
The average Cq value at 8 4° angle of attack was
0.01068. The percent variation was 7.1 percent of
the average value. The percent variation reported by
Olsen was 7.7 percent.

- Each data point was repeated at least twice to
ensure repeatability of the ice shape and drag
measurement. Ice shapes and measured drag
coefficients of three repeat runs for typical glaze ice
(22°F) and rime ice (-15°F) cases at two airspeeds
are shown in Figs. 5 and 6.

At all four conditions, the ice shape repeats well
and the variation of the drag coefficient is within the
percent variation of the measurement. The larger
percent variation is seen with glaze ice, however the
variation is much smaller than that reported in
Olsen3.

Comparison Between Calculated and Measured Ice
Shapes

Ice shapes were computed with the 2D
LEWICE/IBL code for the icing conditions shown in
Table 1. Since the code runs without any user
interactions, the only variable which can influence
the ice shape for a given icing condition is the time
step. Previous investigation? suggested that the use
of 1 minute time interval resulted in the best
agreement with the experimental ice shapes.

To ensure the above finding still holds true, the
effect of time step was investigated with all icing
conditions at the airspeed of 150 mph. Four different
time intervals, 0.5, 1, 2, and 6 minutes, were used.
Figure 7 shows the resulis for a glaze ice, & rime
ice, and a transition case. The use of a longer time
interval resuits in more ice accretion as seen in all
cates. Based on the comparison with the
experimental data, 1 min time step was chosen for all
the calculations.




Figure 8 shows calculated and measured ice
shapes at various temperatures. The experimental ice
shape changes from white, opaque rime ice to
slushy, clear glaze ice with increased temperature.
Airspeed was set at 150 mph. Experimental ice
shapes were taken at the mid-span of the model
where the wake survey was made. The agreement
between calculated and measured ice shapes is good,
particularly for rime ice cases. Icing limits are
predicted well for the temperatures below 18°F. At
warmer temperatures, the calculation predicted more
run back which resulied in more ice accretion beyond
the experimental icing limits. The direction of horn
growth is predicted reasonably well, but in general
the size of the predicted ice shape is larger than the
measured shape.

Figure 9 shows ice shape comparison as s
function of temperature at the airspeed of 230 mph.
Comparisons show similar results as the lower speed
cases. Good agreement is shown at all temperatures
except at 28°F where an overprediction of upper
horn is seen.

Comparison between Caiculated and Measured Drag
Calculated drag coefficients were compared with
measured drag coefficients for the ice shapes shown
in Figs.8 and 9. With each icing run, the wake
survey was made twice: one made while the probe
traversed away from the shield, and the other made
while the probe traversed back to the shield. Each
measured drag coefficient in Table 2 is the averaged
value of the two measurements at each icing run.

Calculated drag coefficients are also included in
Table 2 for comparisons.

Results in Table 2 are plotted in Figs.10 and 11.
For both airspeeds, the experimental data show
almost constant measured drag coefficients up to

around 12°F and a sharp increase toward near
freezing temperatures as the ice shape changes to

glaze ice. For V.= 150 mph, calculated drag
coefficients agree very well with measured drag

coefficients up to 12°F and begin 1o rise sharply at
around 18°F. While calculated drag coefficients

reach a peak at around 22°F and begin to decrease,
measured drag coefficients continue to rise and reach

a peak at around 28°F. For V.=230 mph, however,

the calculated results does a good job of following
the trend in measured values.

Concluding Remarks

The ice shape and drag coefficient results of the
experimental program conducted in the IRT were
compared with the predictions using the 2D
LEWICE/IBL code. Experimental data provided
validation data to further calibrate the code with
various icing parameters such as the temperature,
sirspeed, and LWC. Good agreement in the ice shape
was shown for the rime ice. The agreement
deteriorated for the glaze ice, although the direction
of the horn growth was generally predicted well.
Deterioration in ice shape prediction for glaze ice is
a typical characteristic shown with the original
LEWICE code. The ice shape comparison results
indicate that the modifications made to the original
LEWICE code in the process of combining it with
the interactive boundary layer method work well.

The results of the drag comparison study show
the ability of the code to predict the sharp drag
increase displayed by the experimental data as the ice
shape changes from rime 1o glaze. The cdjusiment
made by extending the roughness beyond the icing
limit on the airfoil allows the calculated drag values
to agree well with experimental data. More studies
are needed to better estimate the extent of icing on
the airfoil surface.

The big strength of the 2D LEWICE/IBL code is
the economy of the computing time. A typical
computing time (CPU time only) to complete a
calculation of 6 or 7 minutes ice accretion and its
aerodynamic characteristics was less than 50 seconds
on a CRAY X-MP.

More comparison work is needed to check the 2D
LEWICE/IBL code for further improvements. The
test points of the repeatability test in the IRT were
reduced from the original test plan due to the loss of
tunnel time. More tests are planned to document the
effects of other icing parameters on the ice shape and
resulting drag. It is also planned to obiain
experimental lift data with iced airfoils for code
validation work.
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Fig.1. Plan View of IRT, Shop, and Control Room.

Table 1. Test Conditions

Arr Total Ice
AOA | Speed | LWC | MVD | Temperature | Accretion
(deg.) | (mph) {(g/m3) (um) CF) Time
(min.)
4 150 1.0 | 20 28 6
4 150 1.0 | 20 25 6
4 150 1.0 { 20 22 6
4 150 1.0 20 18 6
4 150 1.0 | 20 12 6
4 150 1.0 | 20 1 6
4 150 1.0 | 20 -15 6
4 230 | 0551 20 28 7
4 230 ] 0.55 | 20 25 7
4 230 | 055 ] 20 22 7
4 230 | 0.55 ] 20 18 7
4 230 | 0.55 ] 20 12 7
4 230 | 0551 20 1 7
4 230 | 0551 20 -15 7

Ty, - TURNING )
", 2" ' VANES »
e, | FLOW >
e, ~— 5000 no FAN o
3
o
____—-_] r,"’ R
——
2100 TON
R VARICHRON DAIVE
CONTROL ROOM
3
o - BALANCE CHAMBER
\)
& %
‘\\ il .,
& vl - — 300 MPH TEST Y,
o we I -="" SecoNsxan 4
w0 SPRAYS — i >
\\\ g
A
SPRAYBAR -
CONTROL -~
ROOM ~ ~
CONTROL ROOM —/

Fig.2. NACA 0012 Airfoil and Wake Survey Probe.
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(a) Airspeed=150 mph, LWC=1.0g/m3, MVD=20um

Drag Coefficient, Cy

Table 2. Effect of Total Air Temperature on Drag Coefficient.

Total Experimental | Calculated
TETRTNT | Conthient | Coefhgent
28 0.0578 0.0346
25 0.0540 0.0372
22 0.0315 0.0392
18 0.0271 0.0351
12 0.0229 0.0217
1 0.0229 0.0209
-15 0.0233 0.0202
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Fig.10. Effect of Total Temperature on Drag ( V., =150 mph).
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Abstract

Recent work on the analysis of 1ced airfoils
and wings i{s described. Ice shapes for multi-
element airfolls and wings are computed using an
extension of the LEWICE code that was developed
for single airfolls. The aerodynamic properties
of the iced wing are determined with an inter-
active scheme 1in which the solutions of the
inviscid flow equations are obtained from a panel
method and the solutions of the viscous flow
equations are obtained from an inverse three-
dimensional finite-difference boundary-layer
method. A new interaction law 1s used to couple
the inviscid and viscous flow solutions.

The newly developed LEWICE multielement code
s applied to a high-11ft configuration to
calculate the ice shapes on the slat and on the
main airfoil and on a four-element airfoil.

The application of the LEWICE wing code to the
calculation of ice shapes on a MS-317 swept wing
shows good agreement with measurements. The
interactive boundary-layer method 1s applied to a
tapered iced wing in order to study the effect of
icing on the aerodynamic properties of the wing
at several angles of attack.

1.0 Introduction

In recent years there has been considerable
research activity in the area of aircraft icing
to combat the adverse effects of leading-edge ice
formation on fixed and rotary wing aircraft and
on engine intakes. Computational work and related
experimental studies have been initiated and are
being carried out under the NASA Aircraft Icing
Research Program to develop and validate a serfies
of mutually compatible computer codes to predift
the detalls of an aircraft 4cing encounter.
The papers presented each year at the the AIAA
Aerospace Sciences Meeting and the papers pre-
sented 1n this symposium show that indeed much
progress has been made in this area.

In this paper we report a summary of our prog-
ress 1in predicting ice shapes on airfoils and
wings and in determining the effect of ice forma-
tion on aerodynamic performance degradation. For
airfoil flows, our research has led to improve-
ments in the LEWICE_code® for predicting leading-
edge 1ce formation’ and to the development of an
interactive boundary-layer (1BL) method* for
determining ghg increase in drag and loss of 11ft
of airfoils?+® and helicopter blades’ due to
fcing. This capability for predicting ice shapes
on airfolls has also been extended by the authors
to include airfolls with slats, and very recently

* Professor and Chairman.
** Agssociate Professor.
+ Research Professor.

44 Research Associate.

to multielement atrfoils so that ice shapes on the
main airfoll and on the flap can be computed as
well as on the slat. This will permit the effects
of icing on high-1ift configurations to be com-
puted using the 1interactive boundary-layer method
recently developed by Cebeci et a1.®

For wing flows, our research followed a similar
path, concentrating on the development of (1) a
three-dimensional version of the LEWICE code, (2)
a three-dimensional 1interactive boundary-layer
(18L) method for iced wings, and (3) the coupling
of the IBL method to the LEWICE code to determine
the ftce shapes and their effects on 11ft, drag
and moment coefficients for wing flows.

The progress to date for airfoll flows 1s des-
cribed in several papers. For this reason the
present paper concentrates mainly on three-
dimensional flows and describes the extension to
wing flows of the combined LEWICE/IBL procedure
developed for airfolls. Section 2 describes the
method for calculating 1ce shapes on the leading
edge of a wing and presents a comparison between
calculated and experimental results. Section 3
describes the interactive boundary-layer method
for computing three-dimensional flows on iced
wings. In addition, this section presents the
results obtained from the application of this
method to a NASA MS 317 tapered wing with ice and
to an unswept NACA 0012 wing without ice. 1In each
case, the inviscid and viscous flow equations are
solved interactively to determine the increase in
drag due to ice and to compare the calculated
pressure coefficients with measured values. Sec-
tion 4 presents recent results obtained for multi-
element atrfolls and 1s followed by concluding
remarks.

2.0 Extension of LEWICE to Wings and
1ts Validation

The extension of the LEWICE airfoll code to
wings 1s not so stratghtforward. There are sev-
eral possible approaches that can be pursued. In
each approach the flowfield calculations should
be performed in principle using a three-dimen-
sional inviscid method, and the mpingement pat-
tern of the water droplets on the surface should
be determined by performing trajectory calcula-
tions for the three components of the velocity
obtained from the inviscid method. The heart of
the LEWICE code, however, is the third module that
contains the quasi-steady-state surface heat
transfer analysis in which mass and energy equa-
tions are solved for a two-dimensional flow 1n
order to determine the ice shape and size. The
extension of this module to three-dimensiona)
flows would require the heat balance equation,
developed for airfoll flows, to be modified to
wing flows. And, as discussed in Ref. 9, this
can only be done with the help of expertimental
data that presently do not exist. As a first
step, 1t 1s best to leave the heat balance in its




two-dimensional form and assume 1t to apply to a
three-dimensional body expressed in an equivalent
two-dimensional form. %Pe approach, followed by
Potapczuk and B‘lduell.1 1s to perform the tra-
Jectory calculations for a three-dimensional flow-
field and apply them along the streamlines on the
wing. Another approach, followed in Ref. 9, is
to approximate the 3-0 wing by an equivalent yawed
infinite wing at each spanwise station. In this
case, the flowfleld 1s calculated by a three-
dimensional panel method and the particle trajec-
tories calculated for flow normal to the leading
edge subject to the infinite swept-wing assump-
tion. Another approach is to apply the LEWICE
airfoll code to the streamwise cross-section of
the wing. This approach has at least two alterna-
tives, one of which is described in this paper.
The accuracy of these three approaches and others
depend on the angle of attack and the spanwise
location of the airfoll section, and they regquire
a careful evaluation through comparisons with
experimental data. !

2.1 Comparison of M red hapes and Pre-
dictions Obtained with Yawed Wing Approximation

The calculated results obtatned with the exten-
ston of the LEWICE airfoil code to wing flows by
the method of Ref. 9 are shown in Figs. 1 and 2
together with the experimental results!! on an
MS-317 swept wing. A summary of test conditions
used in the calculations are given in Table 1.
Additional studies for other test conditions are
in progress and will be reported later. The calc-
ulated 1ce shapes in Figs. 1 and 2 were obtained
for the untapered wing with a MS-317 airfoil sec-
tion defined streamwise with a sweep angle of 30*
and an aspect ratio of six. A1l trajectory and
ice accretion calculations were carried out for
inviscid flow computed on the mid-semispan section
where the spanwise pressure gradient was negligi-
ble. Al) calculations were performed for one time
step to save computer time, which is approximately
7 minutes per run on the Cray computer. The in-
crease in time, In comparison with the two-
dimensional case, 1s primarily due to the trajec-
tory calculations where, despite the yawed infi-
nite wing approximations, the computation of the
of f-body velocities involves repeated large matrix
multiplications in which all wing panels are
represented.

Figure 1a shows a comparison of measured and
calculated 1ce shapes for Run 8, which corresponds
t0 T = 0°, a = 2°, t = 390 sec. As can be seen,
the agreement between measured and calculated
results 1s remarkably good. The calculated
results for a calculation time of 1164 sec and for
Te = 0°F and a = 2° (Run 11) are shown 1n Fig. 1b
and indicate reasonable agreement with measure-
ments despite the one time step used in the calc-
ulations. It 1s expected that the ice growth wil)
have some effect on the velocity field and on the
calculated dropiet impingement. A comparison of
predicted and measured 1ice shapes obtained for
Tew = 0°F at a = 8° for t = 390 and 1164 sec. (Runs
9 and 10) are shown in Ffigs. 1c and 1d, respec-
tively. The agreement 1s again reasonable, keep-
ing in mind that only one time step was used in
the calculations.

The next set of studies was conducted for a
slightly higher freestream temperature of T,
= 15°F, representing an icing condition for which

(2)

(b)

(c)

(d)

Ftg. 1. Comparison of calculated (solid lines)
and measyred (dashed 1ines) ice shapes. Rime ice:
(a) Run 8, (b) Run 11, (c) Run 9, (d) Run 10.

a mixed ice growth was observed. Run 7 1n Fig. 22
for o = 2°* and t = 390 sec. indicates good agree-
ment between experiment and theory, except for
some deviation on the upper surface. The results
in Fig. 2b at the large time step of t - 1164 sec.
(Run 1) are more or less in agreement in predict-
ing the amount of tce accumulated, but they differ
in predicting 1ts shape. It s known from two-
dimensiona) calculations that a large number of
relatively short time steps are needed to predict
horn-shaped ice for glaze ice. Since the mixed
ice formation tends toward glaze 1ice shapes for
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Fig. 2. Comparison of calculated (solid 1l1ines)

and measured (dashed 1lines) 4ice shapes. Mixed
ice: (a) Run 7, (b) Run 1, (c) Run 6.

Table 1. Test Conditions for MS-317 Ice Accretion
Experiment of Ref. 8, Vo = 150 mph, d = 20 um,
LWC = 1.03 gm-3.

T t '

Run h (sec) (deg) (kg/c)y
1 15 1164 2.0 0.00192
6 15 1164 8.0 0.00192
7 15 390 2.0 0.00192
8 0 390 2.0 0.00127
9 0 390 8.0 0.00127

10 0 1164 8.0 0.00127

N 0 1164 2.0 0.00127

large times, 1t 1is not surprising that one time
step calculation s not sufficient to predict the
actual growth of the ice shapes. Similar comments
apply to Fig. 2c, where comparisons are for a
large time step of t = 1164 sec. (Run 6), but at
a = B,

2.2 Comarison of Measured Ice Shapes and Pre-
dictions Obtained with Strip Theory Approximstion

Additional calculations were also performed
with the LEWICE code to determine the ice shapes
on the leading edge of the MS-317 swept wing dis-
cussed in the prevtous subsection. This time we

used the strip theory approximation rather than
the yawed wing approximation. We calculated the
three-dimensional velocity fleld from the panel
method and used the velocity distribution in the
LEWICE code for the streamwise airfoll section.
Figure 3 shows a comparison between the ice shapes
computed with strip theory (2-0) and yawed wing
(3-D) approximations together with the measured
ice shape for run 11. As can be seen, both calc-
ulated ice shapes, at least for this run, agree
reasonably well with experimenta! data. Addi-
tional studies are underway to further investigate
the differences between the two procedures.

<

J

(‘ M\\~ ,::'x:"\ -~
‘\lT:::'"1“EE£i;:=

F1g9. 3. Comparison of calculated ice shapes with
experimental data. 2-D represents the ice shape
with strip theory approximation and 3-D that with
yawed wing approximation.

2.3 The Role of Wind Tunnel Effect on the Calcu-
Jation of Ice Shapes

In general, 1infinite yawed wing conditions
apply to the mid-semispan section of wings with
an aspect ratio greater than about five. This
approximation becomes progressively less accurate
as the tip or the root of the wing is approached,
but in most instances 1t can sti11 provide reason-
able answers. A point to remember about the use
of this approximation with finite aspect ratio
wings Js that although the flow may have the
desired charactertstics, its 1ift is always less
than the 11ft of a wing with infinite aspect
ratio. This may lead to problems in comparing
calculations with experimental data unless the
aspect ratio or the pressure distribution 1s also
given. If the pressure distribution is not avail-
able, the given angle of attack may not properly
represent the experimental conditions. Similar
problems may also arise in simulating wind-tunnel
conditions by calculating the corrected incidence
and 11ft coefficient 1in free air, because the
trajectories in the two cases may be far from
identical. One solution to the wind-tunnel prob-
lem, which may be the only acceptable solution for
a swept wing spanning the tunnel, is to calculate
the flowfield about the wing in the presence of
the tunnel walls.

The comparisons between the calculated and
experimental 1ce shapes presented in Subsections
2.1 and 2.2 were obtained for the icing conditions
and angle of attack given in Table 1. Care, how-
ever, is required to perform the calculations as
closely as possible to the stated experimental
conditions. Even though the atmospheric 4icing
conditions are properly defined in the LEWICE
calculations, the angle observed in the wind
tunnel together with the wing aspect ratio may




need to be different when the flowfield calcula-
tions are performed with the panel method for a
free air model.

To 1investigate this possibility further, we
have calculated the pressure distributions for a
constant chord wing with MS-317 streamwise sec-
tions and with a 30° sweep, having a finite aspect
ratto in free air and spanning the side walls of
a wind tunnel, using the panel method of Ref. 12.
The free air model was chosen to have an aspect
ratio of 6 in order to reduce the root and tip
effects at the mid-semispan 1location. It was
found that the angle of attack of the free-air
model had to be increased to 4° for the pressure
dtstr\bgtions to match the experimental data of
Bidwellf measured at 2° angle or attack in the
wind tunnel. The 8° angle-of-attack case in Table
1 required an increase of 3.5° angle 'of attack in
free atr to obtain sattsfactory agreement with the
pressure distributions. Since there is some doubt
about the flowfields being matched at the widely
differtng angles of attack in the wind tunnel and
in free air, the flow was calculated about the
wing in the wind tunnel. This requires additional
paneling of the tunnel floor, celling and one
sidewall, while taking advantage of one plane of
symmetry. Figure 4 shows the calculated and mea-
sured pressure distributions at o« = 2° in the
wind tunnel compared with results from the calcu-
lattons 1n free air at a = 2° and 4°. Agreement
between the experimental data and the calculations
for the wing in the wind tunnel 1s very good,
considering that the calculated pressure distribu-
tion corresponds to inviscid pressure distribution
and does not include any viscous effects. As can
be seen, matching of free-air calculations with

Fig. 4. Computed and experimenta) pressure dis-
tributions for the MS-317 airfoll. .. denotes
results for o = 2°, free air, --- a = 4°, free
air. Symbol o denotes experimental results for
a = 2°, wing tunnel and o denotes calculated
results for a = 2°, wind tunnel.

wind-tunnel data 1s a trial and error process.
Studies are underway to extend these calculations
to include a wing with ice. This 1s relatively
easy, except for the longer computing times for
the particle trajectories resulting from the large
number of panels used in the calculation of the
nviscid flowfield.

3.0 Three-Dimensional Interactive Boundary-
Layer Method

A complete description of the three-dimensional
interactive boundary-layer method 1s described in
Ref. 9 and {s presented here for completeness.

As In two-dimensional flows, the Iinteractive
method for three-dimensional flows 1is based on
the solutions of the inviscid and boundary-layer
equations. An interface program, 11lustrated by
Fig. 5, is placed between the inviscid and three-
dimensional inverse boundary-layer methods to pro-
cess the geometry and 1inviscid velocity data for
input to the boundary-layer program. The basic
input to this program is (1) the definition of the
wing configuration that 1s used by a geometry sub-
routine to construct a nonorthogonal coordinate
system and (2) the assoctated geometrical param-
eters, which consist of the geodesic curvatures
and metric coefficients needed in the boundary-
layer calculations. Some of the generated data
1s used later in a velocity subroutine to deter-
mine the 4inviscid velocity components at the
boundary-layer grid points and to transform the
inviscid velocity components on the surface, calc-
ulated in a Cartesian coordinate system, into the
boundary-layer coordinate system. This operation
consists of calculating dot products of velocity
vectors as well as chordwise and spanwise interpo-
lation. Further velocity and geometry data pro-
cessing is carried out in a subroutine that sepa-
rates the generated information into upper and
lower surfaces of the wing for boundary-layer
calculations.

INVISCID N INTERFACE 3D INVERSE
METHOD PROGRAM "] B METHOD
1
BLOWING ~
) VELOCTTY

fig. 5. The interactive boundary-layer method.

The above procedure 1s appropriate to wings
without ice and has been used to compute transonic
flows on wing/body configurations where, since
the wing leading edge was free of ice, there was
no difficulty in generating solutions near the
attachment 1ine by constructing the nonorthogonal
coordinate system and computing the geometrical
properties of the wing. For a wing with ice, gen-
eration of the boundary-layer solutions near the
leading edge can pose problems since the geodesic
curvatures and metric coefficients must be deter-
mined for an irregular surface. In addition, the
formulation of the 1interactive boundary-layer
method developed for 1ced airfoils must take
account of the three-dimensional nature of the
flow. Thus, it is necessary to make changes in
the strategy for solving the three-dimensional
boundary-layer equations for an iced wing. These
are considered below.




3.1 Boundary-Layer Equations

The three-dimensional boundary-layer equations
for a nonorthogonal coordinate system are given
in severa) references. With Reynolds stresses
modeled by the eddy-viscosity concept, they can
be written as,

3 3 a -
ax (uh2 sine) + a2 (wh] sine) + ay (vh]hz sine) = 0
Q)]
u o L w o M _ 2 2
h] a + “2 az 'tV ay K]u cote + Kzu coseced
* KoUW = - co;ecze a , cote cos F1]
12 ph] ax phz a
3 u
v oy b ay) v (2)
U aw W oaw o 2 2
h] ' hz az 'Y 3y~ Kzu cote + K1u cosece
s K coté coseco ap COSGCZO 2D
- oh ax "~ ph, @z
1 2
3 (p M
+v ay (b ay) (3)

Here x denotes the coordinate along the 1lines
formed by the intersection of the wing surface and
planes representing constant percent semispan; 2
is the coordinate along the constant percent
chordlines that generate the wing surface, with
chord defined as the maximum length line between
leading edge and tralling edge. The third coord-
inate y denotes the direction normal to the wing
surface, and the parameter h denotes the metric
coefficients, with © the angle between the
coordinate lines x = const and z = const. For an
orthogonal system, 6 = v/2. The parameters Ky and
Ky are known as the geodesic curvatures of the
curves z = const and x = const, respectively.
Equations (1) to (3) are subject to the follow-
ing boundary conditions

u=0, vs=0,

ys=20, ws=0 (4a)

Yy =8, Us=ue(x,2), W= we(x,2) (4b)

The solution of the above eguations also
requires initial conditions on two intersecting
planes; those in the (y,z) plane at a specifted
chordwise location are determined from the solu-
tions of the equations discussed In Subsection
4.3. Those on the (x,y) plane, at a specified
spanwise location 2z = z,, with 25 corresponding
to, say, the root location, are determined from
the soluttons of the quasi-three-dimensional form

of Egs. (1) to (3) with all derivatives with
respect to z neglected, that 1s,

rR I -
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subject to the same boundary conditions given in
Eq. (4).

3.2 ]nteraction Law

To account for possible flow separation, as in
two-dimensional flows, we use the interaction law
of Veldman'3 where, for airfoil flows, the edge
velocity s expressed as the sum of an 1inviscid
velocity u@(x) and perturbation velocity &ue(x)
due to viscous effects, that is,

Ue(x) = uf(x) + dug(x) (8)

The perturbation velocity is given by the Hilbert
integral

do (9)

X

1.d
‘ue(l) " . Ix do ("e‘.) ]

a
in the interaction region (x,, Xp).

To extend this inverse formulation to three-
dimensional flows, 1t 1s necessary that the two-
dimensional 1interaction formula given by Eq. (9)
be either modified to account for the interaction
in the x- and 2-directions or be replaced by
another formulation which provides a relationship
between displacement surface and external veloc-
Aty. Here we use the former approach, as des-
cribed in Ref. 14, and first generate an initial
displacement surface by solving the quasi-three-
dimensional boundary-layer equations subject to
the boundary conditions given by Egs. (4) and {8)
with the external velocity distribution u@(x)
obtained from the panel method. The second Step
involves interaction between the 4inviscid flow
equations and the gquasi-three-dimensional flow
equations. As in two-dimensional flows, the
solutions of the boundary-layer equations are used
to compute distributions of blowing velocity on
the surface, and these allow the inviscid flow
solutions to be updated. In step three, after the
calculation of the initial conditions in the (y,2)
and (x,y) planes, the fully three-dimensional
boundary-layer equations are solved with the
external velocity components resulting from step
two. As before, the spanwise velocity component
1s assumed to correspond to 1ts inviscid value.
The viscous flow solutions are obtained by march-
ing in the spanwise direction at each advancing
chordwise location. This represents the first
phase in an Ainteractive loop that involves the
fully three-dimensional boundary-layer equations.
In the subsequent phases, as before, the blowing
veloctity distribution 1is used to obtain improved
inviscid flow solutions, so the fully three-
dimensional boundary-layer equations are solved
for \fed wings as for clean wings in transonic
flow 14

The viscous effects in the spanwise component
We are assumed to be second order, although their
neglect s contrary to the trrotationality condi-
tion. However, trial calcula.tons involving vari-
ations of both velocity conditions showed that
errors were smaller than those assoclated with
the convergence of the soluttions.




3.3 Iransformed Equations

As in two-dimensional flows, we express the
boundary-layer equations in transformed vartables
for computational purposes. At first, when the
equations are solved for a prescribed external
velocity distribution (standard problem), we use
the Falkner-Skan transformation and a modified
version of this transformation for the finverse
mode. In the former case, the independent vari-
ables are defined by

u, 1/2 x
n=(3) ¥, s- ol h,dx(1o)

X a X, =2,

For the dependent variables u, v and w, we intro-
duce a two-component vector potential such that

. v . 28
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In addition, dimensionless parameters f and g are
defined by

v = (uevS)1/2h251nef(X.z.ﬂ)

(12)
u
¢ = (ueus)]/z Gf h,sineg(x.z.n)
Ny L] l2 Iinl 02
(bf")' + ef" « mz(f ) msf g' + mB(g )<+ m
o Af o 3
= m10f TR L ET; (13)

(bg")' + eg" + m,f'g’ + ma(g')2 + mg(f‘)2 (LU

v 29° v 99
= mjof ax IS m7g 22 (14)
' ‘ ' af' ag'
el =mflemg t Mo ™ a2 (1%)

The coefficients m to m, are defined in Ref. 9.

In terms of transformed variables, boundary
conditions given by Eq. (4) become

n=0: fagsf'2g'=a0

(16)

The form of the transformed quasi-three-dimen-
sional equations 1s fidentical to the form of Egs.
(13) to (15), except for small differences
discussed in Ref. 9.

To solve the equations in the inverse mode, we
define independent variables by

u, 172 x
XaXx, 252, Yas (;;) Y, S = OJ hldx (17)

and relate the vector potenttals ¢ and & to f and
9 by

2
h,
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(18)

[ 3 (uous)1’2 h]sineg(x.z.n)

and with a prime now denoting differentiation with
respect to Y and ue and w, denoting edge velocity
components normalized by reference velocity Ug
Eqs. (1) to (3), with e' defined by Eq. (15) and
m's given in Ref. 9, are written as

(DF*)* + of" + nz[(f')z - (ﬁe)zl e m (69" - i)
W2 e 22 ot . g
+ ma[(g ) - (He) ] = ’l'o(f 'T' - ue a_x_)
Caft o A,
(8 7 - Ve 37 )
(19)
(bg*)' + eg* ¢ my[(9')7 - (5)%) ¢ m,[f'g" - §,5,]
. aw
¢ mgl(F)2 - (%0 = mg(er B _ g e
aw
1 3 ! o __e
+ my(g 3§- - Ye 22
(20)

The transformed boundary conditions for the sys-
tem of Eqs. (19) and (20), with ue given by Eq.
(8) and with we corresponding to 1ts ftnviscid
value, are

n=20: f:g-f'-g'-O (2]3)

"o f' = (21b)

The quasi-three-dimensional form of the equa-
tions, which are subject to the boundary condi-
tions given by Eq. (21), are obtained from the
above equattons by setting

au aw

af ag  Te e i

az az a2 z 0 and mb 0 (22

To generate the 1niti1al conditions near the
leading edge of the iced wing, we use quasi-three-
dimensional boundary-layer equations expressed in
the inverse mode given by
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The above equations can be further simplified
1f we assume that two adjacent defining sections
of a wing are connected by straight 1ine develop-
ment, as commonly used in the wing design. This




feature simplifies the problem of shaping the
metal for a wing surface. As a consequence, we
can neglect the geodesic curvature of x = constant
lines, namely Ky, and thus set my =mg = 0. From
the definitions of my and mg, 11 can be seen that
as a result of the above assumption, these two
terms are also small and can be neglected. We
further assume that the local vartations in cross
sections 1n the spanwise direction are small.
Examination of the terms my, my and for a typi-
cal wing shows that m, reaches a value less than
0.1 very close to the leading edge (x/c < 0.01)
and mg reaches a maximum value of 0.2. However,
their magnitudes rapidly decrease with increasing
x and reach a very small value at x/c < 0.1. This
behavior allows us to neglect mp; and mg 1in the
equations and set my = 1/2.

3.4 Solution Procedure

A detatled description of the solution.proced-
ure will be reported separately. Briefly, the
boundary-layer equations expressed 1in terms of
transformed variables are solved with Keller's
two-potnt finite-difference method!3 {box scheme)
with boundary conditions expressed in inverse form
with the 9interaction law described in Subsection
3.2. Depending on the complexity of the flow
field, two forms of the box scheme are employed.
In regions where all velocity components are pos-
fttve, the regular box scheme ts used. In regions
of elther a negative spanwise velocity component
or negative streamwise velocity component, the
21g-zag box scheme described in Ref. 15 1s used.

3.5 Performance Deqradation of an Iced Tapered
Wing

The interactive boundary-layer method of Sec-
tion 3 was used to study the performance degrada-
tion of an iced wing having MS-317 airfoil stream-
wise sections, an aspect ratio of 3.43, and a
taper ratio of 0.4. Icing conditions were chosen
to correspond to those in Runs 8 and 11, shown in
Table 1. The pressure distribution on the wing
was computed at four Tlocattons defined by the
midsection of each wing-section with a hundred
panels on each defining airfoll section. The
ice shapes corresponding to this pressure distri-
bution were computed with the method of Section 2
An the middle of each wing section and were used
to distribute ice along the leading edge of the
tapered wing. The computed ice shapes for o =
2° were then assumed to be the same for all angles
of attack on the wing in the investigation of the
performance degradation of the wing due to fice
shapes corresponding to the atmospheric conditions
given in Runs 8 and 11. At a specified angle of
attack, with the defined ice shapes along the
leading-edge of the wing, calculations were per-
formed with the method of Section 3; that 1is,
inviscid flow calculations performed for an tced
wing were followed by the 14inverse three-
dimensional boundary-layer calculattons to deter-
mine the blowing velocity distribution to be used
in the ‘ncorporation of viscous effects into the
inviscid method. The inviscid flow solutions made
use of four 1ifting strips, and the viscous flow
calculations included boundary-layer calculations
on the wing and in the wake, the latter requiring
velocities at off-body points in the potential
field. This interactive and iterative procedure
was repeated until the solutions converged. The
19ft coefficients were then calculated from the

inviscid method for each {ndividual strip and
included the contribution of ice protruding beyond
the wing contour and the drag coefficients from
the boundary-layer calculations.

figure 6 shows the varlation of the calculated
11ft coefficients as a function of angle of
attack. Since the primary purpose of the calcu-
lations was to demonstrate the increase in drag
due to ice on a tapered wing, the angle of attack
range was not extended to stall, which would occur
at relatively high angles of attack for low aspect
ratio wings. The higher 1ift coefficient than for
the clean wing shown for the two iced wings is due
to the normalization with the wing area of the
clean wing in both cases. The conclusion from
this figure 1s that 11ft 1s not affected by the
rime lce accretion for the angle of attack range
considered here because the ice shapes along the
leading edge of the wing for runs 8 and 11 do not
cause premature flow separation on the wing.

1.6¢ 1164 SEC ICE., .5

4 8 12 16 20
ANGLE OF ATTACK, DEG

Fig. 6. Effect of leading-edge 390 and 1164 sec-
ond rime ice on the 1ift coefficient of a tapered
wing for R = 4.6 x 106 based on root chord.

The calculated drag coefficlents shown in Fig.
7 represent the profile drag of the wing only and
do not represent the total drag, since that
requires the contribution of the induced drag.
The profile drag was calculated sectionwise from
the Squire-Young formula based on the resultant
velocity at the tratling edge. Comparable results
were also obtained from the momentum deficiency
in the far wake. Here we see considerable dif-
ferences between the clean wing and the two iced
wings because the Regnolds number s relatively
Tow (Re = 4.6 x 10° for the root chord) and
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Fig. 7. tffect of Yeading edge 330 and 1164-second

rime 1ice on the profile drag coefficient of a
tapered wing for R = 4.6 x 10° based on root
chord.




there are large regions of laminar flow on the
clean wing. The principal contributor to the drag
increase for the iced wing is the shift in tran-
sition to near the leading edge due to roughness
of the 1ced surface. The contribution of the
surface roughness itself to the drag is very small
for Run 8 because the extent of tce 1s small and
its shape emulates an airfoil leading edge. The
additional drag increase for Run 11 results from
the surface roughness spread over a large wetted
area 1increment. The main conclusion that can be
drawn from these comparisons is that drag incre-
ments obtained between clean and iced airfolls in
wind tunnels depend on transition locations on the
clean wing. If the Run 8 case represents a wing
with transition fixed at the leading edge and the
clean wing case 1s transitton free, the observed
drag 1increments from the Run 11 case are quite
different from each other. As a corollary, drag
increments obtained from wind-tunnel tests may be
meaningless without fixing transition or &nowing
where transition occurs during the tests.

3.6 Results for an Unswept NACA 0012 Wing

Bragg et al.16 have tested two wings with a
simulated ice shape to determine 1ts effect on wing
aerodynamic characteristics. They also tested the
same wings In clean conditions to establish the
base case. Their measurements {include selected
chordwise pressure distributions, balance data on
14ft and drag coefficlients, and section drag data
by wake measurements. Since these measurements
were conducted in a wind tunnel and our calcula-
ttons were to be done for freestream conditions,
at first we decided to perform the calculations for
the clean unswept wing with the interactive method
of Section 3. The inviscid code used seven 11fting
strips, each with 180 chordwise panels atong the
semispan.

Figure 8 shows the calculated pressure distri-
butions for o« = 4 degrees together with the
experimental results. The overall agreement 1is
very good. Also shown are the integrated sectional
11ft coefficients which differ somewhat from case
to case, but this 1s expected from integration of
nonsmooth data. Studies are in progress to evalu-
ate the interactive method for the swept clean wing
and then apply the method to both unswept and swept
wings with ice.

4.0 Calculation of Jce Shapes on
Multielement Airfolls

To extend the method developed for analyzing
iced airfolls and wings to high-1ift configura-
tions, our studies first concentrated on the calc-
ulation of ice shapes on the slat of a four-element
airfodl shown in Fig. 9. Figure 10 shows the
inviscid pressure distribution of the clean four-
element atrfoil at o = 0°. The ice shapes of the
first element corresponding to times up to two
minutes are shown in Fig. 11 for a time step at
of one minute. With ice build-up on the first
element, the computed pressure distribution
butlid- up remains essentlally the same except
along the first element. Figure 12 shows the
progression of the pressure distributions of the
first element with time. As can be seen, the ice
accretions cause rapid changes in the pressure
distribution with large leading-edge peaks.

i 3 Cagare * 10°
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Calculated Measured Calculated
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[ Calculated Measured Calculated
0.359 0.301 1.26
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Fig. 8. Comparison ~f c27cylated (solid lines) and
measured (symbols) results for the unswept clean
wing of Ref. 16 at o = 4°: (a) y/b = 0.168, (b)
y/b = 0.336, (c) y/b = 0.497.
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Fig. 9. Geometry of the four-element airfoll.
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Fig. 10. Pressure distribution for the clean four-
element atrfol) at o = 0°.
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Fig. 11. Glaze 1ce shapes on the first element of
the four-element airfoll at a = 0°.
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Fig. 12. Pressure distribution along the first

element of the four-element airfoil with glaze ice
accretion at o = 0°.

Very recently, the above method has alsc been
extended to multielement airfoils. Figures 13 to
16 show the pressure distributions and the 1ice
shapes on the first two elements of the four-
element alrfoll at a = 4° and 6°. The ice
shapes correspond to 2 and 5 minutes.

Figures 17 and 18 show the results for the
four-element airfoil at a = 0° for a two-minute
glaze ice computed by the multielement LEWICE code.
Additional studies are in progress and will be
reported later.
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Fig. 13. Pressure distribution for the clean four-
element airfoil at a » 4°.
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Fig. 4. Glaze ice shapes on the first two ele-
ments of the four-element airfoll at o =« 4°.

The ice shapes correspond to 2 and 5 minutes.
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Fig. 15. Pressure distribution for the clean four-
element airfoil at a = 6°.
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Fig. 16. Glaze fice shapes on the first two ele-
ments of the four-element airfoil at o = 6°.
The ice shapes correspond to 2 and 5 minutes.
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Fig. 17. Pressure distribution for clean and iced
four-element airfoil at o = 0°.
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f1g. 18. Computed two-minute glaze ice shapes on
a four-element airfoll at o = 0°.

5.0 Conclyding Remarks

Until recently, the only capability for pre-
dicting ice shapes on aerodynamic configurations
was limited to single airfolls. With the methods
described here and with the method described in
Ref. 17 for wings, this capability now includes
wings and aultielement airfoils. These methods,
however, are in their infancy and require improve-
ments and validation with experimental data.




The interactive method for three-d’ Jensional
flows also provides a new capability that, except
for the recent work of Ref. 18, did not exist for
fced wings. Both methods are, also in the early
development stages and require additional work and
validation with experimental data.
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HIGH-LIFT AERODYNAMICS: PROSPECTS AND PLANS
by
Lawrence €. Olson

Fixed Wing Aerodynamic Branch
NASA Ames Research Center, Moffett fleld, CA

Abstract

The emergence of high-11ft aerodynamics 1s
reviewed as one of the key technologies to the
development of future subsonic transport aircraft.
Alrport congestion, community noise, economic com-
petitiveness, and safety - the drivers that make
high-11ft an important technology - are discussed.
Attention is giyen to the potentially synergistic
integration of high-11ft aerodynamics with two
other advanced technologies: wultra-high bypass
ratio turbofan engines and hybrid ‘laminar flow
control. A brief review of the ongoing high-1ift
research program at Ames Research Center is pre-
sented. Suggestions for future research directions
are made with particular emphasis on the develop-
ment and validation of computational codes and
design methods. It 1s concluded that the technol-
ogy of high-11ft aerodynamics analysis and design
should move boldly into the realm of high Reynolds
number, three-dimensional flows.
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EFFICIENT SIMULATION OF INCOMPRESSIBLE VISCOUS FLOW
OVER MULTI-ELEMENT AIRFOILS

Stuart E. Rogers

N. Lyn Wiltberger
Dochan Kwak

MS 258-1, NASA Ames Research Center, Moffett Field, CA 94035

Abstract

The incompressible, viscous, turbulent flow over single
and multi-element airfoils is numerically simulated in an ef-
ficient manner by solving the incompressible Navier-Stokes
equations. The computer code uses the method of pseudo-
compressibility with an upwind-differencing scheme for the
convective fluxes, and an implicit line-relaxation solution
algorithm. The motivation for this work includes interest
in studying high-lift take-off and landing configurations of
various aircraft. In particular, accurate computation of lift
and drag at various angles of attack up to stall is desired.
Two different turbulence models are tested in computing
the flow over an NACA 4412 airfoil; an accurate prediction
of stall is obtained. The approach used for multi-element
airfoils involves the use of multiple zones of structured grids
fitted to each element. Two different approaches are com-
pared; a patched system of grids, and an overlaid Chimera
system of grids. Computational results are presented for
two-element, three-element. and four-element airfoil con-
figurations. Excellent agreement with experimental surface
pressure coefficients is seen. The code converges in less
than 200 iterations, requiring on the order of one minute
of CPU time on a CRAY YMP per element in the airfoil
configuration.

Introduction

An increased understanding of high-lift systems will
play an important role in designing the next generation of
transport aircraft. Current designs for such aircraft typi-
cally involve multiple elements, such as leading edge slats
and multiple-slotted flaps. The current trend is toward a
more efficient, yet simpler design which will lead to reduced
manufacturing and maintenance costs. At the same time,
increases in lift coefficients for a given angle of attack and
increases in maximum lift coefficient will lead to a larger
payload capability. Improved designs will also allow for re-
duced noise in areas surrounding airports. Understanding
of high-lift flow physics harbors the potential to improve
airport capacity through a reduction of an airplane’s wake
vortices, allowing closer spacing between subsequent air-
planes taking off and landing.

Increased knowledge of the flow physics involved with
high-lift systems is therefore of greater interest than ever
before as the need to improve over current designs be-
comes acute. Study of these configurations will require
both computational and experimental efforts. Computa-
tional fluid dynamics (CFD) is playing a large role in this
work. Multi-element configurations present a number of

chalienging problems to the numerical investigators. These
include problems involving turbulent boundary layer sep-
aration, confluent boundary layers and wakes, Reynolds
number effects, three-dimensional effects, compressibility
effects, transition, and complex geometries. Although the
problems are inherently three-dimensional, there is still
much to be learned about the flow physics by studying two-
dimensional models.

The computational tools available range from the more
efficient inviscid/viscous coupled methods, to a Reynolds-
averaged Navier-Stokes (RANS) analysis. An example of
the former method is given by Kusunose et al.! They use
a full potential method coupled with an integral boundary-
layer method. These methods have been found to be suc-
cessful in accurately computing the pressure distribution
for multi-element airfoils, including cases up to maximum
lift, some of which involve separation. The coupled method
has been proven to be useful as an effective engineering de-
sign tool. This method is limited by its inability to compute
beyond maximum lift conditions, and may have problems
with certain features of some airfoil systems such as flap
wells, thick trailing edges, or unsteady effects.

Navier-Stokes calculations for high-lift systems have
been investigated by a number of authors.2~* Schuster and
Birckelbaw? computed the flow over a two-element airfoil
using a structured, compressible, RANS solver. The grid
system used was a pointwise patched system with three
zones, with C-grids around both the main element and
flap, and another outer C-grid surrounding those. Good
results were obtained for low Reynolds number turbulent
flow. The next two authors, Barth,® and Mavriplis* both
used an unstructured grid approach to handle the difficulty
of discretizing multi-element geometries. They were each
able to produce accurate pressure coefficient information
on the airfoil surfaces. The accuracy of the unstructured
grid approach. however, is limited because of the very large
aspect ratio of the triangular cells required to resolve high
Reynolds number boundary layer flows. Also. this approach
is not well developed for three-dimensional problems. Large
computational resources are required, especially CPU mem-
ory. to make these methods work for viscous flows. Unstruc-
tured methods are currently generating a lot of interest in
the research community; improvements to these limitations
are to be expected in the near future. Until such a time.
the current authors believe that a structured grid approach
is the most suitable for solving viscous multi-element prob-
lems in two and three dimensions.

The current work uses an incompressible RANS flow
solver to compute the flow over multi-element airfoils. Two
different grid approaches are used; the first approach em-




ploys the patched grids utilized in Ref. 2, and the sec-
ond uses an overlaid grid approach known as the Chimera
scheme.® The current work examines several airfoil fiow
problems in two dimensions in an effort to characterize cur-
rent capability to numerically study such problems. Grid
topology, computational efficiency, and resulting accuracy
are issues to be examined in the current work. An incom-
pressible flow solver is being utilized because the flow con-
ditions for take-off and landing will generally be less than
a Mach number of 0.2. In the actual fiow, compressibility
effects will generally be confined to a small localized re-
gion, such as near the area of a leading-edge slat. Since the
incompressible Navier-Stokes system has one less equation
than its compressible counterpart, less computing resources
are required.

Algorithm

The current computations are performed using the
INS2D computer code which solving the incompressible
Navier-Stokes equations for steady-state flows® and for un-
steady computations.” This algorithm has also been ap-
plied to problems in three dimensions using the INS3D-UP
code.® The code is based on the method of artificial com-
pressibility as developed by Chorin® in which a pseudo-time
derivative of pressure is added to the continuity equation.
Thus the convective part of the equations form a hyper-
bolic system, which can be iterated in pseudo-time until
a steady-state solution is found. For unsteady problems,
subiterations in pseudo-time are performed for each phys-
ical time step. Since the convective terms of the resulting
equations are hyperbolic, upwind differencing can be ap-
plied to these terms. The current code uses flux-differencing
splitting modeled after the scheme of Roe.!® The upwind
differencing leads to a more diagonally dominant system
than does central differer cing and does not require the ad-
ditional use of artificial .issipation. The system of equa-
tions is solved using a Gauss-Seidel type line-relaxation
scheme. The line-relaxation scheme is very useful for com-
puting multi-zonal grids because it makes it possible to it-
eratively pass AQ (which is the change in the dependent
variables for one time step) information between the zonal
boundaries as the line-relaxation sweeping takes place. The
result is a semi-implicit passing of boundary conditions be-
tween zones, which further enhances the code stability.!?
The resuiting code is very robust and stable. It is capable
of producing steady-state solutions to fine-mesh problems
in 100 to 200 iterations. More detail about the computer
code can be found in Refs. 6-8.

Most of the present calculations used the turbulence
model developed by Baldwin and Barth,!?!? where the
specific formulation found in Ref. 12 was used. This is
a one-equation turbulence model that avoids the need for
an algebraic length scale and is derived from a simplified
form of the standard k — ¢ model equations. In the current
application, the equation is solved using a line-relaxation
procedure similar to that used for the mean-flow equations.
This model has been found to be very robust and easy
to implement for multiple-body configurations. The next
section includes computations of fiow over a single airfoil.

One of the studies for this problem includes a comparison
of the Baldwin-Barth turbulence model with the Baldwin-
Lomax!¢ algebraic turbulence model.

Computed Results

NACA 4412 Airfoil

Calculations were performed for the flow over an
NACA 4412 airfoil at a Reynolds number of 1.52 million. A
C-grid with dimensions of 241x63 was used, with wall spac-
ings on the order of 10,”% which corresponds to y* values
on the order of one. The grid was computed using a hyper-
bolic grid generator.!® A close view of this grid is shown in
fig. 1.1. In order to compute flow quantities for the points
on the computational boundary in the “wake cut” line of
the c-mesh, two lines of dummy points are added such that
these dummy points coincide with points on the other side
of the wake line. The first line of these dummy points is up-
dated by injecting values from the coincident interior points
on which they lie. Using this overlap produces smooth solu-
tions to the equations across this computational boundary.
This procedure also adds dummy points inside the airfoil.
These points are merely blanked out and never used in the
solution procedure. All of the C-grids in this